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Motivation: Image segmentation
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Motivation: Image segmentation




Background: Reconstruction from cross-sections

* A well-studied problem dated back to 70s

o>
o Parallel planes
— Natural choice for 3D images, but may require :>
many cross-sections to describe shape
o
* Non-parallel planes -

— Well-chosen planes can describe shape with fewer

cross-sections [Boissonnat 07, Liu 08, Barequet 09, Bermano 11,
Heckel 11, Zou 15, Holloway 16, Huang 17]
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Background: Reconstruction from cross-sections

* A well-studied problem dated back to 70s
o Parallel planes

— Natural choice for 3D images, but may require
many cross-sections to describe shape

* Non-parallel planes

— Well-chosen planes can describe shape with fewer

cross-sections [Boissonnat 07, Liu 08, Barequet 09, Bermano 11,
Heckel 11, Zou 15, Holloway 16, Huang 17]

— Extension to model multi-labelled domains from
multi-labelled cross-sections




Background: Consistency

* Methods handling non-parallel cross-sections require consistent input

— Intersecting cross-sections share the same labelling along the intersection line

Consistent Inconsistent




Background: Consistency

* All interpolating methods fail on inconsistent cross-sections

* Approximating methods work, but create surface artifacts

[Bermano 11]




Background: where does inconsistency come from?

* Cross-sections are often created independently from each other

* We can ask the users/software to be more careful. But...
— Adds labor and distraction
— Requires changes to existing software

— Cannot process existing data




Objective

* Given a set of (possibly inconsistent) multi-labelled non-parallel cross-sections

* Modify curves on each cross-section to restore consistency




Explicit approach

* Geometric deformation of the curve network on each plane

* Difficult to enforce consistency
— Both the number and location of intersections are unknown

— Deformation may introduce new intersections

* Cannot change curve network topology

— May result in large deformations




Implicit approach

implicit function

ion by an

* Represent the curve network on each cross-sect

* Modify the implicit functions
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Implicit approach

* Easy to enforce consistency

it functions
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— As inequality constraints on the
* Flexible in topological changes




Implicit representation

* Representing a 7-labelled plane:
[Losasso 06, Feng 10, Yuan 12, Huang 17]

— Define nscalar functions /41 (x),....fdn (x)

— Label as index of the function that achieves
maximum value:

Label(x)=argmax /0O fli (x)

— Labelled regions are bounded by a non-
manifold curve network
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Implicit representation

* Representing a 7-labelled plane: [Losasso
06, Feng 10, Yuan 12, Huang 17]

— Define nscalar functions /41 (x),....fdn (x)

— Label as index of the function that achieves
maximum value:

Label(x)=argmax /0O fli (x)

— Labelled regions are bounded by a non-
manifold curve network
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Implicit representation

* Define initial scalar functions as signed distance functions
— Triangulate each cross-section

— Compute fIITP (v) for label 7 at vertex von plane 2 as signed distance to boundaries of label 7
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Problem formulation

* Given implicit functions on each cross-section

* Modify the functions so that:
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— Labelling is consistent on intersection lines

— Distortion to curve networks is minimized




Consistency constraints

* Consider vertex v on the intersection line between cross-sections 2,

— A,..nTP (v),fI1,.., nTQ (v): scalar values on plane Z,¢
* Suppose the final label at vis known, /{7) p
— Then function value of /(v) is greater than any other label at v

JUW)TP (v)=fLiTP (v)+& fLUW)TQ (v)=/Li1Q (v)+¢

Vi#{v) / o’ y

* Since we don’t know /(7), we leave it as a variable. /




Deformation energy

* Deviation from input curve networks
— How far have the curves moved? (zero order)

— How much have the curve tangents changed? (1% order)

(zero order)

(1%t order)

/input function; Z: discrete gradient




Mixed-Integer Programming (MIP)

Continuous variables: /TP (v)
Integer variables: /()

Minimize: £(f)

Subject to: fU(v)TP (v)=fLiTP (v)+&

// Implicit function values at all vertices
// Labels at vertices on intersection lines

// Quadratic deformation energy

// Consistency constraints




Optimization

* MIPs are computationally expensive to solve

* We propose an efficient solution strategy by iteratively solving Quadratic
Programming problems




Quadratic Programming (QP)

* For a given set of labels /() at each vertex v on intersection lines:
— Continuous variables: fL/TP (v) // Implicit function values at all vertices

— Minimize: £(/) // Quadratic deformation energy

— Subject to: fL(v)TP (v)=fLiTP (v)+& // Consistency constraints




Optimization strategy

e Start with an initial set of labels on the intersection lines

— By averaging values from multiple planes

* Solve QP D
* Update labels and repeat

— Until energy no longer decreases




Updating labels

* A set of labels defines a set of inequality constraints

— A convex cell in the solution space

* Minimizer of QP lies on the boundary of the cell

— Otherwise, the input is already consistent




Updating labels

* A set of labels defines a set of inequality constraints

— A convex cell in the solution space

* Minimizer of QP lies on the boundary of the cell

— Otherwise, the input is already consistent

— Each hyperplane containing the minimizer corresponds to a pair
of labels /(v), with similar values at some vertex v

— Setting /(v)=ipotentially lowers the energy




Updating labels

* Sort all hyperplanes by magnitude of energy gradient
across the hyperplane

* Visit each hyperplane, flip label, and compute QP of the
new label set

* Take the next label set as the first hyperplane with
positive reduction in energy




Experiments: Parameter selection

* Choosing /: trade-off proximity with shape preservation

— Energy = A * 0-order difference + 1%t-order difference

A=100 A=1 A4=0.01




Experiments: Performance

* Comparing with off-the-shelf MIP solver (Gurobi)
— 2-labels input: increasing number of cross-section planes

— Our method produces similar energy but using significantly less time

# planes Our Gurobi Our Gurobi
energy energy Time (s) Time (s)

2 16.65 16.65 0.845 1.05

3 24.95 24.95 1.253 11.28

4 25.02 25.03 3.024 33.16

5 29.55 29.55 33.218 619.91




Experiments: More examples

* Atrium (2 labels, 5 planes, time: 1 sec)

[Bermano 11]

Consistent output Surface from input Surface from output




Experiments: More examples

* Ferret brain (2 labels, 10 planes, time: 66 sec)

Inconsistent




Experiments: More examples

* Ferret brain (2 labels, 10 planes, time: 66 sec)
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Experiments: More examples

* Livers (5 planes, 4 labels, total time: 25s)

Inconsistent




Experiments: More examples

* Livers (5 planes, 4 labels, total time: 25s)
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Experiments: More examples

* Mouse brain (6 planes, 7 labels, total time: 4215s)

Inconsistent Consistent




Conclusion

* An algorithm for restoring consistency to non-parallel cross-sections
— Formulating and solving an MIP on implicit functions

— Allowing existing surface reconstruction methods to work on imperfect cross-section inputs

* Limitations and future work

— Improving deformation energy to better preserve smooth/sharp features

— Integration into interactive volume segmentation (real-time feedback to users)




