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Fig. 1. Given several multi-labeled planes depicting the anatomical regions of a mouse brain (a), reconstruction without topology control (b1) leads to
redundant handles for the red and yellow labels (black arrows in c1, d1) and disconnection for the green label (e1). Our method (b2) allows the user to prescribe
the topology such that the red label has one tunnel (gray arrow in c2), the yellow label has no tunnels (d2), and the green label is connected (e2). The legends
in (b1,b2) report, for each label in the reconstruction, the genus of each surface component bounding that label (e.g., “0,0” means two surfaces each with genus
0). User-specified constraints are colored red.

In this work we present the �rst algorithm for reconstructing multi-labeled
material interfaces the allows for explicit topology control. Our algorithm
takes in a set of 2D cross-sectional slices (not necessarily parallel), each
partitioned by a curve network into labeled regions representing di�erent
material types. For each label, the user has the option to constrain the num-
ber of connected components and genus. Our algorithm is able to not only
produce a material interface that interpolates the curve networks but also
simultaneously satisfy the topological requirements. Our key innovation is
de�ning a space of topology-varying material interfaces, which extends the
family of level sets in a scalar function, and developing discrete methods
for sampling distinct topologies in this space. Besides specifying topolog-
ical constraints, the user can steer the algorithm interactively, such as by
scribbling. We demonstrate, on synthetic and biological shapes, how our
algorithm opens up new opportunities for topology-aware modeling in the
multi-labeled context.
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1 INTRODUCTION
Computational modeling of multi-labeled domains arises in many
disciplines, such as biomedicine (e.g., organs made up of multi-
ple anatomical regions) and mechanical engineering (e.g., machine
pieces made up of blocks of di�erent materials). Such domains are
often represented by the non-manifold network of surfaces that par-
tition the domain into labeled sub-domains. This network, known
as the material interface, is widely used in applications including
geometric processing, physical simulations, and manufacturing.

To be useful for applications, a material interface has to meet
certain correctness criteria. Most importantly, the material interface
should be geometrically valid (i.e., free of holes and intersections),
so that it de�nes a proper partitioning of the domain into disjoint
sub-domains. Furthermore, some applications are also sensitive to
the topology of the surface. For example, �uid simulation within
one or more sub-domains can be adversely a�ected if the surfaces
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bounding these sub-domains fail to have an expected number of
connected components or genus. Extraneous components or genus
can also be detrimental for many geometric processing tasks, such
as mesh simpli�cation and surface parameterization.

Topology control has been extensively studied in the context of
modeling two-labeled domains, where the material interfaces are
closed manifold surfaces. However, to date, no such control has
been seen in modeling domains containing three or more labels in
the absence of a template (see review in Section 2). Ensuring correct
topology in a multi-labeled context is arguably more challenging,
because the topology of di�erent labels are intertwined: modify-
ing the topology of one label may a�ect the topology of several
other labels. The intertwining makes it di�cult even for humans
to manually �x topological errors on a complex material interface
without introducing geometric errors (e.g., the mouse brain in Figure
1 (b1-e1)).

In this paper, we present a novel algorithm for enforcing topo-
logical constraints when reconstructing multi-labeled material in-
terfaces. Our algorithm is designed for inputs consisting of cross-
sections of the subject. Such inputs often arise in biomedicine, where
experts delineate boundaries of anatomical regions on 2D slices of a
3D medical image (e.g., MRI, CT). Cross-sectional inputs can also be
found in other disciplines, such as material science (e.g., sectioned
micrographs) and geology (e.g., seismic images). To model a multi-
labeled domain, each cross-section contains a curve network that
partitions the plane into labeled regions. Our method gives the user
the option to specify the desired topology, in terms of number of
connected components and genus, for any subset of the labels. The
output is a geometrically valid material interface that interpolates
the curve networks while meeting the topological requirements
(Figure 1 (b2-e2)).

Our key contribution is a novel de�nition, called interface sets,
that gives rise to not one, but a space of topology-varying material
interfaces. Our de�nition mimics the level sets, which is a family of
closed manifold surfaces de�ned by a scalar function and parameter-
ized by a scalar value. Similarly, the interface sets are non-manifold
surface networks de�ned by a vector function and parameterized
by a vector value. We analyze the topological events in the multi-
variate space of interface sets, which are much more complex than
those in the univariate family of level sets, and propose a simple
and e�ective method for sampling distinct topologies of interface
sets.

Using the interface sets, we extend the recently introduced topology-
controlled algorithm of Zou et al. [2015] from two-labeled domains
to multiple labels. Our algorithm proceeds in two stages. First, within
each cell bounded by the cross-section planes, we de�ne a suitable
vector function and enumerate interface sets with di�erent topolo-
gies. Each topology is also given a score that measures its likelihood.
Next, we perform combinatorial optimization to select one topology
per cell so that the overall reconstruction satis�es the user-given
topological constraints while the total score is maximized.

In addition to specifying components and genus, the user can
steer the method in interactive ways. The user may browse and
select from the list of topologies computed by our method for each
cell. If a desired topology does not exist in our computed list, we
o�er a sketching interface whereby the user can easily create new

topologies. These user inputs guide the algorithm towards a more
satisfactory reconstruction. We demonstrated our algorithm and
tool on both simple synthetic inputs and non-trivial biological data
sets (e.g., Figures 1, 8, 9).

1.1 Contributions
To the best of knowledge, our method is the �rst for material inter-
face reconstruction that o�ers topology control without the use of
any templates. Our main contributions are:

(1) De�ning a multi-variate space of material interfaces, ana-
lyzing its topological structure in the discrete setting, and
developing a topology sampling method (Section 3).

(2) Extending the topology-controlled reconstruction algorithm
of Zou et al. [2015] from two to multiple labels (Section 4).

(3) Developing interactive tools for re�ning the surface topol-
ogy (Section 5).

While our method is designed for cross-sectional inputs, we be-
lieve some of our contributions (particularly the method of interface
sets) can bene�t topology-aware modeling from other input types,
such as point clouds or labeled medical images.

2 RELATED WORKS
We brie�y review the three bodies of work that are closed to ours,
namely modeling multi-labeled domains, topology control in mod-
eling two-labeled domains, and reconstruction from cross-sections.

2.1 Modeling multi-labeled domains
Typical representations of multi-labeled domains include (regional
or global) implicit functions [Feng et al. 2010; Kim 2010; Losasso
et al. 2006; Mitchell et al. 2015; Saye 2015; Yuan et al. 2012; Zhao et al.
1996; Zheng et al. 2006] and volume fractions [Ahn and Shashkov
2007; Anderson et al. 2008, 2010; Bonnell et al. 2003]. While implicit
function representations are often based on level sets, current works
typically utilize a single level as the underlying function evolves (e.g.,
during a simulation), which creates a univariate family of domains.
We are not aware of any work that explores a multi-variate space
of material interfaces.

Many reconstruction methods are capable of creating geometri-
cally valid material interfaces. The majority of these methods are
based on iso-contouring [Anderson et al. 2008; Bertram et al. 2005;
Dillard et al. 2007; Feng et al. 2010; Haitham Shammaa et al. 2010; Ju
et al. 2002; Qian and Zhang 2011; Yuan et al. 2012; Zhang et al. 2007],
a few perform mesh surgeries [Brakke 1992; Da et al. 2014], and
others further address the quality of elements (e.g., triangles and
tetrahedra) using Delaunay meshing [Boltcheva et al. 2009; Bronson
et al. 2014; Dey et al. 2012; Faraj et al. 2016; Pons et al. 2007] or par-
ticle di�usion [Meyer et al. 2008]. However, none of these methods
o�ers explicit control over the topology. While topological errors
can be avoided by �tting or evolving a template shape with the
correct topology [Waggoner et al. 2015], these methods are limited
to the availability of templates.

2.2 Topology-aware modeling of two-labeled domains
Numerous methods have been developed to �x topological errors
on a closed manifold surface (see survey [Attene et al. 2013]). The
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Fig. 2. Comparing the topology-oblivious multi-labeled method of Bermano
et al. [2011] (b), the topology-constrained two-labeled method of Zou et al.
[2015] (c), and our topology-constrained multi-labeled method (d) on two
cross-sections with three labels (a). Cutaway views are shown in inserts.
Legends report the per-component genus for each label (red numbers are
constrained).

vast majority of these methods are concerned with the removal of
redundant topological handles, while some also address connected
components [Ju et al. 2007; Nooruddin and Turk 2003]. Another
class of methods directly reconstruct a topologically correct model
from raw inputs, such as a point cloud [Sharf et al. 2006, 2007; Yin
et al. 2014], a collection of cross-section curves [Zou et al. 2015], or
a grayscale volume [Bazin and Pham 2007; Zeng et al. 2008]. These
methods are guided by prescribed genus [Sharf et al. 2006; Zou et al.
2015], interactive inputs [Sharf et al. 2007; Yin et al. 2014], or an
existing template [Bazin and Pham 2007; Zeng et al. 2008].

2.3 Reconstruction from cross-sections
Surface reconstruction from cross-sectional curves has been exten-
sively studied in computer graphics in the past few decades. We
refer readers to recent works [Bermano et al. 2011; Zou et al. 2015]
for more expansive reviews. Our method is closest to the class of
methods that extracts the surface as the level set of an implicit func-
tion [Bermano et al. 2011; Herman et al. 1992; Liu et al. 2008; Turk
and O’Brien 1999; Zou et al. 2015]. Most notably, Bermano et al.
[2011] uses multiple implicit functions, one for each label, to extract
multi-labeled material interfaces. However, except [Zou et al. 2015],
all of these methods consider a single level in the implicit function(s)
and leave no room for topology control. For the simple input shown
in Figure 2 (a), applying the method of Bermano et al. [2011] results
in two components of the red label (Figure 2 (b), see cutaway view
in the insert). This would be undesirable if the user wants a single
connected red structure that tunnels through the blue structure.

The only method that o�ers topology-controlled reconstruction
was introduced recently by Zou et al. [2015], upon which our method

extends. Within each cell bounded by the planes, this method ex-
plores multiple, topologically di�erent level sets of an implicit func-
tion. A naïve way to extend this method to handle multiple labels is
by reconstructing each label independently with the desired topol-
ogy and combining the reconstructed surfaces. This is exempli�ed
in Figure 2 (c), where red and blue labels are reconstructed by Zou’s
method respectively with genus 0 and 1. However, as seen in the
cutaway view, the combination of two reconstructions results in
jarring con�icts and intersections. In contrast, our extension of
Zou’s work creates a geometrically valid material interface with the
desired genus for both labels (Figure 2 (d)).

3 INTERFACE SETS
Level sets have played fundamental roles in existing methods [Sharf
et al. 2006, 2007; Zou et al. 2015] to provide topology control in
modeling two-labeled domains. These methods take advantage of
several unique features of level sets. First, given a scalar function,
any level set is guaranteed to be geometrically valid (i.e., a closed
manifold). Second, the collection of all level sets is parameterized
along a single “level” axis and can be easily explored. Third, the
level sets have a rich topological variety, and extensive studies are
available on the topological evolution of the level set with the level
[Edelsbrunner and Harer 2009; Milnor 1963].

To enable topology control in the context of multi-labeled mod-
eling, we introduce a space of material interfaces that possesses
similar features as level sets. Given a vector function, we de�ne a
space of interface sets such that each interface set is a geometrically
valid material interface. The space is parameterized by a vector value
(as opposed to a scalar level in level sets) and can be systematically
explored. Lastly, this space reduces to the family of level sets in the
special case of two labels, and it contains a even richer variety of
non-manifold topologies in the case of three or more labels.

We start by de�ning interface sets and discussing their proper-
ties in the continuous setting (Section 3.1). Building upon classical
works on level set topology, we then characterize the topological
variations of interface sets in a discrete setting (Section 3.2). Finally,
we propose a simple and e�ective scheme for sampling the large
variety of interface set topologies (Section 3.3). In the next section,
the sampling scheme will be utilized in our reconstruction algorithm
to produce candidate local topologies from cross-sectional inputs.

3.1 Definition and properties
Our de�nition builds on an existing implicit de�nition of mate-
rial interfaces, which has been used by various researchers [Feng
et al. 2010; Losasso et al. 2006; Yuan et al. 2012]. In this de�ni-
tion, a n-labeled domain is represented by a vector-valued function
®f (®x) = { f1(®x), f2(®x), . . . , fn (®x)}, where ®x is a point ind-dimensional
space and each fi is a continuous scalar function. Intuitively, fi (®x)
describes the “prominence” of the i-th label at ®x . Each point is then
assigned the most prominent label(s), that is,

Labels(®x) = arg max
i=1, ...,n

fi (®x). (1)

The material interface consists of all points whose label assignment
is not unique (i.e., two or more labels share the greatest prominence).
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This material interface is guaranteed to be geometrically valid, as it
divides the space into regions with unique labels.

To be able to de�ne not just one, but a parameterized set of
material interfaces, we introduce an o�set vector ®c = {c1, . . . , cn }
to the de�nition described above. This o�set vector plays the role
of the “level” in de�ning the level sets in a scalar function. More
precisely, ®c is added to the vector function ®f before evaluating the
labels. That is, the labeling is now parameterized by ®c as

Labels(®c, ®x) = arg max
i=1, ...,n

(fi (®x) + ci ). (2)

The interface set at o�set ®c consists of all points ®x whose label as-
signment is not unique, that is, |Labels(®c, ®x)| , 1.

We can visualize interface sets in d = 2 dimensions intuitively
as superimposed terrain maps (Figure 3). Imagine that each fi is
the height map of a 3D terrain over the 2-dimensional domain,
and that each terrain has a unique color (Figure 3 (a)). Given an
o�set vector ®c , we shift each i-th terrain vertically by the amount
ci and superimpose the shifted terrains (Figure 3 (b,c,d) middle).
The labeling function Labels(®c, ®x) is precisely the picture of the
superimposed terrains taken from above, and the interface set is
where two or more terrains meet in this picture (Figure 3 (b,c,d)
bottom).

It is easy to see that every interface set is a geometrically valid
material interface, since it divides the domain into regions carrying
unique labels (i.e., Labels(®c, ®x)). In particular, the interface set at
the zero o�set ®c = 0 is the material interface de�ned in the �rst
paragraph and used in previous works.

We can also show that interface sets reduce to level sets in the
case of n = 2 labels. In this case, any level set of a scalar function can
be reproduced by some interface set of a vector function, and vice
versa. Speci�cally, the level set of a scalar function f at any level c
is identical to the interface set of the vector-valued function ®f (®x) =
{ f (®x), 0} at o�set ®c = {0, c}. Conversely, the interface set of a vector-
valued function ®f (®x) = { f1(®x), f2(®x)} at any o�set ®c = {c1, c2} is
the same as the level set of the scalar function f (®x) = f1(®x) − f2(®x)
at level c = c2 − c1.

Note that an interface set is di�erent from the intersection of
n level sets, each de�ned by a scalar function fi and a level ci , as
studied in multivariate topological data analysis [Carr and Duke
2014; Edelsbrunner and Harer 2002]. The interface set is generally
a (d − 1)-dimensional complex, regardless of the number of labels
n, since it partitions the d-dimensional space into labelled regions.
In contrast, the intersection of n level sets has a dimensionality of
d − n, which is lower than that of the interface set and decreases
as the number of labels increases. In the case of n = 2 labels in
d = 3 dimensions, the intersection of level sets consists of one-
dimensional curves, which are known as �bers and have found uses
in visualization of bivariate data [Carr et al. 2015; Tierny and Carr
2017].

3.2 Discrete topological variations
Topological evolution of the level set, as the level changes, is well-
understood [Edelsbrunner and Harer 2009; Milnor 1963]. Topologi-
cal changes are marked by local topological events, such as merging,
splitting, and destruction or creation of components. These events

(a)

(b) (c) (d)

Fig. 3. Interface sets in 2D: (a) The input vector function ®f = {f1, f2, f3 },
visualized as three height maps. (b,c,d): Three di�erent choices of o�sets
®c = {c1, c2, c3 } (top), superimposed height maps fi + ci (middle), and the
labeling (as color) and interface sets (as black curves) in the 2D domain
(bo�om).

take place at well-de�ned locations, known as critical points, which
are identi�ed by vanishing gradient of the scalar function. The func-
tion values at these locations, known as critical values, divide the
range of levels into one-dimensional intervals, such that the level
sets within one interval all share a common topology.

In contrast, topological evolution of the interface set, as the o�set
vector changes, is far more complex. First, there is a greater variety
of topological events that involve non-manifold features of the sur-
face (e.g., junction curves and points where more than three sheets
meet). Second, the multi-variate nature of our “level” parameter -
the o�set vector - creates a complex topological landscape in the
space of interface sets. Let’s consider the n-dimensional space of all
o�set vectors, which we call the o�set space. This space is made up
of disjoint n-dimensional regions (as opposed to one-dimensional
intervals in the case of level sets) such that interface sets within one
region all share a common topology. We call such regions topology
pockets, or pockets in short. Topological events take place when
the o�set vector moves from one pocket to an adjacent pocket in
the o�set space. We call the o�set vectors that lie on the boundary
of pockets the critical o�sets. Unlike the critical values in a scalar
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function, critical o�sets in a vector function form continuous, (n−1)-
dimensional complex in the o�set space, which we call the critical
complex 1.

Characterizing the critical o�sets is key to understanding the
topological evolution of the interface set. However, providing a
complete, continuous characterization has proven to be a non-trivial
task. As our goal is to develop algorithms for practical, discrete
inputs, we perform our analysis in a discrete setting and leave the
continuous characterization as a venue for future investigation.

3.2.1 Discretization. We consider the discrete input as a simpli-
cial complex C in Rd . Each vertex (i.e., 0-cell) v of C is associated
with a vector ®fv = { fv,1, . . . , fv,n }. A common way to construct a
function is by piecewise linear (PL) interpolation within each cell
ofC . Such interpolation is particularly suited for analyzing level set
topologies [Edelsbrunner and Harer 2009], since topological events
of level sets are restricted to the vertices of C . However, we have
observed that the topological events of interface sets in a PL vector
function are no longer restricted to vertices ofC . In fact, these events
can take place in arbitrary locations in the domain. An example is
shown in Figure 4 (a) for a 4-labeled domain in 2D; note that the
yellow label disappears inside a triangle after the o�set changes.

(a) Piecewise Linear (b) Piecewise constant

Fig. 4. (a) A topological change of interface sets in PL interpolation can take
place in arbitrary locations: lowering the o�set of the yellow label causes
the yellow region to disappear inside the triangle. (b): A topological change
in our PC interpolation is restricted to the dual of the input complex. The
o�seted functions are shown at the top and the interface sets are shown at
the bo�om.

To make the analysis of topological events simpler, we opt for a
piecewise constant (PC) interpolation. We consider the dual complex
of C , noted as C∗, which consists of k-cells that are dual to (d − k)-
cells of C for k = 0, . . . ,d . The vertices of C∗ lie at the barycenters
of their dual d-cells in C (although the exact locations do not a�ect
the topology analysis). We de�ne the vector function ®f so that
®f (®x) = ®fv for any point ®x in the interior of a d-cell in C∗ that is
dual to a primary vertex v . Since ®f is discontinuous, we adjust
the de�nition of the interface sets as the union of all cells of C∗

that are faces of two d-cells of C∗ with di�erent labels. Examples

1The e�ective dimension of o�set space is n−1, since the interface set only depends on
the relative di�erence between components of the o�set vector. Similarly, the critical
complex is an “extrusion” of a (n − 2)-dimensional complex (Figure 5(c)).

of such interface sets are shown in Figure 4 (b). In contrast to PL
interpolation, interface sets in PC interpolation are restricted to low-
dimensional cells of C∗, which allows for simpler characterization
of critical o�sets (see below).

3.2.2 Critical o�sets. In our PC interpolation, the interface set
changes only when a vertex of complex C alters its label. We call
the o�sets that trigger these vertex label-changing events the active
o�sets. An active o�set is critical if label-changing causes the topol-
ogy of the interface set to change as well. We will �rst characterize
the active o�sets and then identify the subset that is critical.

Given a vertex v and any pair of labels i, j ∈ {1, . . . ,n}, there is
a collection of o�sets ®c at which v may switch its label between i
and j. This collection is de�ned by a set of equality and inequality
constraints:

{®c | fv,i + ci = fv, j + c j > fv,k + ck ,∀k , i, j} (3)

Geometrically, this collection forms a bounded (n − 1)-dimensional
hyperplane in the n-dimensional o�set space. There are C2

n such
hyperplanes for each vertexv , and they together partition the o�set
space into n symmetric regions corresponding to the n possible
labelling of v . Combining the hyperplanes over all vertices forms a
piecewise linear complex in the o�set space is the union of all active
o�sets. We call this complex the active complex.

To see this visually, take n = 3. Equation 3 de�nes a 2D half-
plane in the 3D o�set space. For each vertex v , there are C2

3 = 3
such half-planes, one for each pairing of labels. The three half-
planes share a common boundary line in the direction of {1, 1, 1}
passing through the point {−fv,1,−fv,2,−fv,3}. Visually, they form
a “triblade” around the line. The triblades associated with all vertices
intersect to form a honeycomb-shaped active complex (Figure 5 (c)
and cutaway in (d)).

Since our reconstruction algorithm is concerned with the topol-
ogy of individual labels, we de�ne a topological event in this paper
as when there is a change in either the number of connected com-
ponents or genus of the surfaces that bound a particular label. To
this end, we can use the same criteria for critical points in a PL
scalar function [Edelsbrunner and Harer 2009] to identify topologi-
cal events in any given label. Speci�cally, recall that the star of a
cell σ in a complex consists of all cells that contain σ as a face, and
the link consists of all faces of cells in the star that are disjoint from
σ . Given a labeling of the vertices by an o�set vector, we de�ne the
i-link of vertex v as the union of cells in v’s link that contain only
vertices with label i . Switching the label of v between i and another
label triggers a topological change of label i if the i-link of v is not
contractible to a single point.

As an example, we use the criteria to analyze the label-changing
event in Figure 4 (b). Since the label of the center vertex changes
from blue to red, we focus on the blue-link and the red-link of that
vertex. The former consists of one edge (at the bottom) and a vertex
(at top-left), which is not contractible, while the latter consists of
a single edge (at top-right), which is contractible. Hence the blue
label experiences a topological change (a splitting).

An active o�set ®c satisfying Equation 3 is critical if either the i-link
or j-link of v is not contractible. Geometrically, the critical complex,
made up of the union of all critical o�sets, forms a sub-complex of
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Fig. 5. Topology analysis of 3-labeled interface sets. (a) A complex C where each vertex is colored by the associated 3-vector. (b) The piecewise constant vector
function shown as one height map for each label. (c) The active complex in the 3D o�set space consisting of one triple half-plane (“triblade”) for each vertex of
C . (d) A cutaway of the o�set space (by the gray plane in (c)) showing the active complex (colored lines) and the critical complex (black lines). (e) Example
interface sets in di�erent pockets (see pocket labeling in (d)).

the active complex. As the active complex is piecewise linear, so is
the critical complex, which divides the o�set space into polyhedral
pockets. An example of the critical complex forn = 3 labels is shown
in Figure 5 (d) on a cross-section of the o�set space, and (e) shows
topologically distinct interface sets in di�erent pockets.

Note that the per-label topological events that we detect do not
cover all possible ways in which the topology of the interface set can
change. For example, as we will show in Section 7, the connectivity
of the non-manifold junction curves can change without altering
the topology of any individual label. It would be interesting in the
future to de�ne other types of topological events, which would lead
to a more re�ned critical complex. This would potentially allow a re-
construction algorithm to have �ner control over the non-manifold
topology of the material interface.

3.2.3 Topology sampling. A direct way to enumerate distinct
topologies of interface sets is to explicitly construct the critical
complex in the o�set space. However, this can be computationally
expensive. Our calculations, con�rmed by experiments, show that
the active complex has a complexity of O(V n−1) where V is the
number of vertices in the input domain C and n is the number
of labels. A brute-force algorithm that �rst constructs the active
complex and then prunes non-critical parts would be impractical.

To tame the complexity, we opt for an approximate, sampling-
based approach. The motivating observation is that the more tran-
sient topologies tend to correspond to smaller pockets in the o�set
space. For example, tiny pockets (D,E,F) in the o�set space of Figure
5 (d) correspond to topologies that contain small isolated compo-
nents, as shown in (e). We therefore argue that a regular sampling
scheme in the o�set space would have a greater chance of �nd-
ing the more stable topologies, because they are more likely to be
captured by larger pockets.

A naïve point sampling scheme is to use regular lattice points in
the o�set space. However, to form a good coverage, more than a
few points would be needed for each dimension of the space, and

the total number of samples can still be signi�cant as the dimension
of the o�set space (i.e., the number of labels) grows.

To reduce the sample count without sacri�cing the coverage, we
use 1-dimensional rays as samples. By intersecting a ray with the
critical complex, we can compute intervals along each ray within
which the interface sets share a common topology, much in the
same way as how the level set topologies are enumerated. Unlike
point samples, each ray e�ectively represents an in�nite number
of point samples (in one direction), and hence a relatively small
number of rays are needed.

As our reconstruction algorithm is mostly interested in material
interfaces at o�sets close to zero, we shoot rays in a radial pat-
tern from the origin of the o�set space (see insert). Accounting for
the one redundant dimension of the o�set space, the rays all lie
in hyperplane orthogonal to the 1-vector {1, . . . , 1}. To create a
pseudo-uniform distribution, we form rays connecting the origin
with points on a regular lat-
tice in that hyperplane cen-
tered at the origin with (2b+
1) points on each of its side,
where b is a user-speci�ed
small integer. This creates up
to (2b + 1)n−1 rays. In our
tests, we found that b = 1 of-
fers a reasonable sampling of
topologies while keeping the
overall execution time low
even for large n (e.g., 6-8).

Intersecting a ray with the
critical complex can be implemented easily and executed e�ciently
(i.e., in polynomial time). We start by computing the intersection
between a parametric equation of the ray and a hyperplane of the
active complex de�ned by Equation 3, which involves solving a
linear equation with one variable and checking the solution against
a set of linear inequalities. The intersecting o�set, if found, is further
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Fig. 6. Reconstruction algorithm: starting from the plane arrangement (a, showing 3 cells divided by the two cross-section planes), our algorithm first
enumerates and scores topologies of interface sets within each cell (b, interface sets in each cell are ordered by decreasing scores), then one topology is
selected per cell to achieve the topological constraints while maximizing the total score (c, showing solutions under two sets of constraints marked in red;
le�ers by the cutaway views at the bo�om are choices of cell topologies).

checked for criticality using the link-based criteria described earlier,
which operates in the local neighborhood of a vertex in the input
complex C . Repeating these computations for all hyperplanes and
sorting the resulting critical o�sets produces the desired intervals.
The total complexity of the algorithm is O(H logH + L ∗ n ∗ H )
where L is the maximum number of cells in the link of a vertex and
H = VC2

n is the number of hyperplanes. For a �xed dimensionality
of the input (3 in our case), this complexity is polynomial in both
the number of vertices (V ) as well as in the number of labels (n).

4 RECONSTRUCTION ALGORITHM
We now describe our algorithm for reconstructing material inter-
faces from cross-section inputs. The input to our method consists of
a collection of possibly non-parallel planes in 3D, each partitioned
into labeled regions by a network of curves. Without additional in-
put, our algorithm produces a geometrically valid material interface
that interpolates the curve networks.

The user have the option to specify the desired topology of the
subject. For complex subjects made up of many labels (e.g., Figures
1,8,9), the user may not have the knowledge of the precise topology
of all labels. Also, the topology of some labels may not matter in
downstream applications. To be able to handle these practical sit-
uations, we let the user choose any (possibly empty) subset of the
labels whose topology need to be constrained. For each constrained
label, the user speci�es the desired number of connected surface
components that bound that label as well as the genus for each
component. Note that a connected 3D region with an interior cavity
(“bubble”) counts as two separate surface components.

Our algorithm adopts the classical divide-and-conquer paradigm
for cross-section-based reconstruction. We consider the partitioning
of the 3D space into convex polyhedral cells by the input planes
(known as the arrangement in computational geometry). The re-
construction problem is reduced to creating a surface within each
cell that interpolates the curves on the boundary of the cell. What
di�erentiates our algorithm from the majority of existing methods
is that we create not one, but a collection of surfaces within each
cell that di�er in topology. These surfaces give rise to a space of
topologically di�erent overall reconstructions, among which one

that matches the user-speci�ed topology is chosen. Our method
proceeds in two stages, which are illustrated on a simple example
in Figure 6:

(1) Enumeration: For each cell of the arrangement, compute
a set of topologically distinct material interfaces that all
interpolate the curve network on the cell’s boundary. As-
sign a score to each material interface that measures its
likelihood. (Figure 6 (b), Section 4.1)

(2) Selection: Select one material interface per cell so that
the overall reconstruction matches the user-given topol-
ogy constraints while the sum of the scores is maximized.
(Figure 6 (c), Section 4.2)

Our method generalizes the same two-stage framework of Zou et
al. [2015] from closed, manifold surfaces to multi-labeled material
interfaces. Besides using the newly developed interface sets for
topology enumeration (Section 3), we made several extensions in
their framework to address the challenges associated with multiple
labels. In the enumeration stage, Zou designed a scalar indicator
function whose level sets interpolate the curve loops on the cell’s
boundary. We extend it to a vector function whose interface sets
interpolate the boundary curve networks. In the selection stage, Zou
uses a region-growing dynamic programming algorithm, which we
extend to simultaneously track the topology of multiple labels.

We next detail the two stages while highlighting our extensions
over Zou’s work. The result of these two stages is a topologically
correct reconstruction made up of interface sets within the arrange-
ment cells. Since our interface sets are de�ned on the dual of a
tetrahedral complex, they have jagged appearances. We improve the
geometry of the reconstruction in a post-process using the method
in [Liu et al. 2008] which creates a re�ned and fair material interface
that still interpolates the input curve networks.

4.1 Enumeration
We consider a polyhedral cell Ω in the arrangement whose boundary
∂Ω is partitioned by a curve network U into regions with up to n
labels. To enumerate material interfaces within Ω, we de�ne a vector
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function ®f over Ω and use the techniques developed in the previous
section to sample topologically distinct interface sets of ®f .

The function ®f , as well as the range of the o�sets, need to be
carefully chosen so that the interface sets interpolateU . In addition,
the interface sets should depict a natural extension of U into the
interior of Ω. In the special case of two labels (outside/inside), Zou
et al. [2015] de�nes a harmonic indicator function that evaluates to
1 (resp. 0) at any point on ∂Ω that is labeled outside (resp. inside).
Harmonic function o�ers a natural interpolation of the boundary
values. This particular function also has the desirable property that
any level set at a level in the range (0, 1) interpolates U on ∂Ω.

Extending Zou’s scalar function ton > 2 labels, we de�ne a vector
indicator function ®f = { f1, . . . , fn } such that each fi is a harmonic
function and, for any point ®x on ∂Ω, fi (®x) = 1 if ®x has label i and
fi (®x) = 0 otherwise. It is easy to verify that the interface set of
®f interpolates the curve network U at an o�set ®c = {c1, . . . , cn }
where each ci lies in the range [0, 1). Figure 5 (a) is an example
of such a function in a triangulated 2D cell. As seen in Figure 5
(e), interface sets at di�erent o�set vectors within the [0, 1) range
(which projects to the center hexagonal region in Figure 5 (d)) touch
the cell’s boundary at the same locations.

We compute ®f and enumerate its interface sets on a tetrahe-
dralization of Ω. To ensure consistence among neighboring cells,
tetrahedral meshing is performed once over the entire 3D domain,
constrained by the planes as well as vertices and edges of the curve
networks (we use Tetgen [Si 2007]). The harmonic functions are
computed on the edge graph of the tetrahedral mesh inside Ω, as in
[Zou et al. 2015], which results in a vector ®fv associated with each
vertexv . We then invoke the ray-sampling algorithm (Section 3.3) to
compute intervals of o�sets within the range [0, 1). For each interval
that does not contain the zero o�set, we extract the interface set at
the o�set vector in the midpoint of that interval.

We also extend the scoring method in [Zou et al. 2015] to assess
the likelihood of an interface set. The key idea is to treat each
harmonic function fi as the probability distribution of label i . Given
an o�set vector ®c , which gives rise to the labeling Labels(®c, ®x) for
any point ®x ∈ Ω, we consider the joint probability of all labeled
points,

h(®c) =
∑
v

w(v) log(fv,Labels(®c,v)) (4)

where the summation is over all interior verticesv in the tetrahedral-
ization of Ω, and w(v) measures the total volume of the tetrahedra
incident on v .

Note that many interface sets may have the same topology. This
can be caused by the same pocket in the o�set space being sampled
by multiple rays or even multiple times by the same ray. Also, dif-
ferent pockets may correspond to the same interface set topology.
For each distinct topology (in terms of the number of connected
components and genus for each label), we keep only the interface
set with the highest score and remove the rest.

4.2 Selection
We �rst brie�y review the combinatorial optimization method of
Zou et al. [2015]. In the context of two-labeled modeling, their algo-
rithm aims to �nd a closed surface with a user-speci�ed genus from

enumerated topologies within each cell. The algorithm is optimal, in
that the output is guaranteed to have the highest total score among
all possible combinations of cell topologies that match the target
genus. The basic idea is to grow a known volume (KV), which is a
union of a subset of the cells, while keeping track of the top-scored
solution (i.e., a choice of topology per cell) for each possible surface
topology within the KV. The KV is grown by merging with one
adjacent cell at a time. Each merging computes the solutions of
the new KV from those in the old KV as well as the enumerated
topologies in the merged cell. When the KV is grown to the entire
domain, the algorithm outputs the top-scored solution that matches
the target genus.

We present a simple extension of the algorithm to handle multiple
labels. In a nutshell, we treat the problem of creating
a n-labeled material interface as
creating n overlapping closed sur-
faces. We encode the curve net-
work as a set of overlapping closed
loops, in which each input curve
segment is duplicated (see insert).
Accordingly, we encode the topol-
ogy of an interface set in a cell
as the topology of a collection of
manifold surfaces whose bound-
aries are these loops. Feeding this
representation into Zou’s algo-
rithm allows simultaneous track-
ing of the topology of all labels as
the KV is grown.

Although optimal, the algorithm can have a high complexity due
to the possibly large number of topologies being tracked, which
may grow signi�cantly with the number of labels. We adopt three
strategies to curb the space of topologies. The �rst two strategies
follow those in [Zou et al. 2015], while the last one is unique to our
multi-labeled context. First, we remove any interface set from the
enumeration stage if its topology is deemed too complex, such as
containing some surface with non-zero genus in the cell. Second,
we remove any intermediate solutions during KV growing that
already have higher genus or number of components than the given
topology constraints. Third, if the user only constrains a subset of
the labels, we only keep intermediate solutions that di�er in the
topology of those constrained labels. This last strategy e�ectively
makes the complexity of the algorithm depend only on the number
of constrained labels.

5 USER INTERACTION
Besides specifying topological constraints, we o�er two ways for
a user to interact with our algorithm and re�ne the solution. First,
our method produces a ranked list of possible topologies within
each cell (see Section 4.1). The user can browse through the list
and pick any favorable topology. The user-selected topology will
be treated as hard constraint during optimization. This interaction
can be useful when the algorithm creates a solution that meets the
topological constraints but exhibits undesirable local connectivity.
For example, given the input in Figure 7 (a), the automatic solution
under genus-0 constraint for the red label places the branching of
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the red label in the upper cell (c). The user decides that the branching
should take place in the lower cell, and she selects the corresponding
topology from our ranked list in that cell (d, left). Incorporating this
information, our algorithm then produces another genus-0 solution
with the desired branching location (d, right).

To deal with the case that the desired topology is not found in
the computed list, we developed a sketching tool whereby the user
can create arbitrarily complex topologies within a cell. As shown in
Figure 7 (e, left), the user is presented with a cutaway view of the cell
on a plane that she can manipulate, and she can scribble on that plane
where a particular label should be present. The labeled scribbles are
incorporated by our algorithm to update the vector function in that
cell, by treating the scribble points as �xed label constraints (similar
to points on the cell boundary). A new set of interface set topologies
are then enumerated (the top-scored one is shown in (e, middle))
and used for optimization (e, right). Sketching can be particularly
useful when our algorithm fails to �nd a solution satisfying the
topological constraints, due to the limited set of topologies explored
by the algorithm.

Fig. 7. User interactions: a 4-labeled input (a) and reconstructions without
topological constraints (b), with genus-0 constraint on the red label (c), a�er
the user picks a di�erent topology in one of the cells (d), and a�er the user
adds scribbles in that cell (e). All reconstructions are shown in cutaway
views as their exterior shapes are similar to that in (b).

6 RESULTS
We test our algorithm and tool on several non-trivial biological ex-
amples. These examples contain a large number of labels (6 or more)
that interact with each other in complex ways. Two of the examples
(mouse brain and liver) are also demonstrated in the accompanying
video.

In the mouse brain example in Figure 1, reconstruction without
any topology constraints leads to errors (e.g., extraneous compo-
nents and tunnels) in 3 of the 7 labels (b1-e1). Constraining the

topology of these labels results in a satisfactory solution and no
new topological errors were introduced to the un-constrained labels
(b2-e2).

A more complex scenario is shown on a liver example in Figure
8. Unconstrained reconstruction produces several obvious errors,
including two extra components for the green label and an extra
tunnel for the outside label (see arrows in (b)). Based on prior knowl-
edge, we also know that the turquoise label should form a “shell”
that wraps around the blue and purple labels. In the unconstrained
reconstruction, however, both blue and red labels are exposed to
the outside, and together they create a tunnel for the turquoise label
(see the dotted line in the insert of (b)). After running our algorithm
with topology constraints on green, turquoise and outside labels, a
new error occurs for the unconstrained blue label - it breaks into
two components (see arrows in the insert of (c)). A topologically
correct reconstruction is created after adding constraints for both
blue and red labels (d). Finally, we added scribbles in two cells to
create a more natural branching structure for the green label while
keeping the same topological constraints (e) (the same e�ect can be
achieved if we select an alternative topology in one of the cells and
scribble in the other cell; see the accompanying video).

Lastly, we demonstrate our algorithm on a chicken heart data
set made up of 13 parallel slices containing 8 labels. As shown in
Figure 9 (a), this input is particularly challenging as some labels (e.g.,
light-green) weave through others. Without topological constraints,
the reconstruction contains numerous errors, which are all resolved
after adding constraints on 5 labels. Figure 9 (d) examines two of
these labels, showing the removal of an extra tunnel for the orange
label (d1-d3) and the connection of two components for the light-
green label (d4-d6) as a result of adding the constraints.

6.1 Performance
The performance of our method depends on many aspects of the in-
put. Besides the number of labels, slices and constraints, the amount
of topological ambiguity (as manifested by the number of enumer-
ated topologies) within each cell can also signi�cantly a�ect the
performance. The examples in the paper (Figures 1, 8, 9) exhibit a
range of characteristics along these axes, as shown in Table 1.

Table 1 reports the timings of the two stages of our algorithm on
these examples. Our tool was implemented in C++ and run on a Mac-
Book Pro with 2.5 GHz Intel Core i7 and 16GB RAM. The �rst stage,
topology enumeration, is by far the most time-consuming stage. In
practice, we run this stage only once and invoke the selection stage
repeatedly to optimize for di�erent topological constraints. The
only exception is that, after a sketching interaction is performed in
one of the cells, the enumeration needs to be re-run for that cell.
Timing of the enumeration stage is in fact dominated not by ray-
shooting (Section 3.3), but by processing the intervals returned by
ray-shooting (e.g., extracting interface sets, computing their genus
and connected components, and scoring). Timing of the selection
stage is sensitive to the number of topologies enumerated in each
cell.

7 CONCLUSION AND DISCUSSION
We introduce an algorithm for reconstructing multi-labeled material
interfaces that allows the user to explicitly prescribe the topology

ACM Transactions on Graphics, Vol. 36, No. 4, Article 76. Publication date: July 2017.



76:10 • Huang et al

Fig. 8. The Liver data set (a) and reconstructions without topological constraints (b), with some (c) and more (d) constraints, and a�er applying scribbles (e).
Cutaway views are shown in the inserts, and the legends report the per-component genus for each label (constrained genus are in red). Arrows point to
topological issues, where the solution does not meet users expectation. See detailed explanations in Section 6.

Fig. 9. The chicken heart data set (a) and reconstruction with topological constraints on 5 labels (b, cutaway view in c). (d) compares the reconstruction
of orange (top) and light-green (bo�om) labels without and with topological constraints. The surfaces in (d2,d3,d5,d6) are colored by labels of adjacent
sub-domains to reveal the intertwining of labels.

#Slices #Labels #Tets. Max #Topo. Stage 1 Stage 2
(const.) per cell time time

Fig 1 6 7(3) 91793 8 259s 11ms
Fig 8 5 6(5) 69819 18 212s 83ms
Fig 9 13 8(5) 188401 89 2702s 56s

Table 1. Running time of the two stages of our algorithm on the mouse brain
(Fig 1), liver (Fig 8), and chicken heart (Fig 9). Also showing the number of
constrained labels, number of tetrahedra, and maximum number of per-cell
topologies.

of individual labels. Our key contribution is de�ning a novel space
of material interfaces (as interface sets) that has a rich variety of
topologies and allows for systematic exploration. Combined with

interactive tools, our method was shown to be e�ective on non-
trivial real-world data in the form of cross-sectional slices.

7.1 Limitations
Our work has several limitations that await further investigation
and improvement. Perhaps the weakest aspect is the lack of theo-
retical analysis of the topological variation of interface sets in the
continuous setting. We are already making progress in this direction,
and our initial observation is that the criticality of interface sets, like
the Jacobi set [Edelsbrunner and Harer 2002], is linked to certain
geometric degeneracy of gradients of the scalar functions fi . We
expect such observation to lead to practical and robust algorithms
for analyzing topological events in a piecewise linear interpolation.

Our method uses a number of approximating schemes to tame
the complexity of topology enumeration, including using piecewise
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constant interpolation and ray-sampling. As a result, some topolo-
gies could be missed. We would like to explore the practicality of a
complete construction of the pockets in the o�set space in the piece-
wise linear setting, perhaps limited to a small region around the
origin of the o�set space (i.e., the zero o�set vector). Extensions of
topology �ltering methods [Gingold and Zorin 2006; Günther et al.
2014] from scalar functions to vector functions could also be use-
ful for removing small pockets prior to the construction, therefore
improving the e�ciency.

While our current work focuses on optimizing topology, the ge-
ometry of our reconstruction can be further improved in a number
of ways. As in [Zou et al. 2015], if an underlying image volume is
available, one can create a reconstruction that is aligned to intensity
edges in the volume by replacing the harmonic function in each
cell with image-based random-walk probabilities. Some other ideas
include using more sophisticated scoring function of interface set
topologies that favor smoother geometry, and higher-order har-
monic functions to improve the continuity of surface across cell
boundaries.

7.2 Extensions
Our method opens up new opportunities for topology-aware model-
ing in the multi-labeled context. As our algorithm does not require
the cells to be convex, it can be directly applied to non-planar, and
even partial, cross-sections. In the future, we would like to explore
similar methods for reconstruction from point cloud data and for
�xing topological errors on existing material interfaces. In both
cases, one can convert the input in a vector function and potentially
apply our divide-and-conquer strategy to explore local topological
variations in regions surrounding topological ambiguities.

Another direction for future extension, which we have already
started to explore, is to o�er topological controls at a �ner level,
such as over the adjacency among labels (i.e., whether and how two
labels touch). Note that two material interfaces may share the same
per-label topology (i.e., components and genus) but di�er in their
adjacency. Take the 5-labeled input of Figure 10 (a) for example, the
two reconstructions in (c,d) both have genus-0 for each label but
di�er in how these labels touch each other. In particular, while the
interface between the blue and green labels in (d) forms a continuous
stripe, this interface is broken into several disconnected patches in
(c) due to the touching of the other two labels (purple and yellow).
Controlling adjacency can be important for applications (e.g., mesh
simpli�cation) that are sensitive to the non-manifold structure of the
material interface, in addition to the topology of individual labels.

As a simple example for controlling adjacency, we can modify
our algorithm to minimize the number of non-manifold junction
points, where four or more labels meet (red balls in Figure 10 (c,d)), in
addition to meeting the user-speci�ed per-label topology constraints.
This is done by expanding our criticality criteria of active o�sets to
also check for changes in the number of junction points (Section 3.2)
and including the total number of junction points on an interface set
as part of its score (Section 4.1). The modi�cation creates the result
in Figure 10 (d). We will continue to explore how our algorithm can
be extended to o�er more extensive and precise controls over label
adjacency.

Fig. 10. Given a stack of 5-labeled slices (a) (only blue and green labels
touch on each slice), reconstruction with genus-0 constraint on each label
produces multiple patches of interface between the blue and green labels
(c), whereas a further modification of the algorithm results in a contiguous
interface (d) satisfying the same topology constraints. In (c,d) we only show
the surfaces of the blue label colored by its adjacent labels, and junction
curves and points are shown as grey wires and red balls. The exterior surface
of the reconstruction in (d) is shown in (b).
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