Zhiyang Huang

Jolley Hall 426C, 1 Brookings Driving, St. Louis, MO, 63130

314-630-0100 zhiyang.huang@wustl.edu http://www.cse.wustl.edu/~zhiyang.huang

Education

Ph.D. in Computer Science Research Focus: Computer graphics Advisor: Prof. Tao Ju Washington University in St. Louis, St. Louis, MO

Bachelor of Engineering University of Science and Technology of China, Hefei, China

Interested Position

Algorithm Engineer/Researcher. 3D vision, computer graphics related field particularly on Autonomous Driving, AR/VR.

Publication

Variational Implicit Point Set Surfaces Zhiyang Huang, Nathan Carr, Tao Ju ACM Transactions on Graphics (Proc. ACM SIGGRAPH 2019)

Repairing Inconsistent Curve Networks on Non-parallel Cross-sections

Zhiyang Huang, Michelle Holloway, Nathan Carr, Tao Ju Computer Graphics Forum (Proc. Eurographics 2018)

Robust Optimization for Topological Surface Reconstruction

Roee Lazar, Nadav Dym, Yam Kushinksy. **Zhiyang Huang**, Tao Ju, Yaron Lipman *ACM Transactions on Graphics (Proc. ACM* SIGGRAPH 2018)

Topology-controlled Reconstruction of Multi-labelled Domains from Cross-sections Zhiyang Huang, Ming Zou, Nathan Carr, Tao Ju *ACM Transactions on Graphics (Proc. ACM* SIGGRAPH 2017)

Extrinsically smooth direction field Zhiyang Huang, Tao Ju Computers & Graphics (58) (Shape Modeling International 2016)

Internship Experience

Apple Inc., Sunnyvale, CA, USA

* Intern of software engineering in 3D Vision team in Apple Map.

* Develop deep learning algorithm for point set reconstruction involving VAE-GAN and PointNet.

Area of Expertise Computational Geometry 3D Vision Applied Machine Learning

Aug. 2014 - May 2019

Sep. 2010 - Jun. 2014

May. 2018 - Aug. 2018

* Work on deep learning project associated with curve and surface.	
Research Experience	
Washington University in St. Louis	Sep. 2018 – Jan. 2019
Variational Implicit Point Set Surfaces	
 * Propose a new method for reconstructing an implicit surface from an un- is robust under sparse and non-uniform inputs. * Submitted to SIGGRAPH 2019. 	oriented point set, which
Adobe & Washington University in St. Louis	Sep. 2017 - present
CurveNet: Surfaces and 3D Curve Networks	
 * Use deep learning to solve two problems in computer graphics simultaneously: reconstructing surfaces from 3D curve networks and generating descriptive curve networks from surfaces. * Apply cycle consistency and PointNet into the framework. 	
Washington University in St. Louis	Feb. 2017 – Oct. 2017
Repairing Inconsistent Curve Networks on Non-parallel Cross-sections	
 * Present the first algorithm for restoring consistency between curve networks on non-parallel cross-section by formulating it into a disjunctive programming. * Propose an effective solution for the specified highly non-convex optimization problem. * This work was presented in Eurographics 2018. 	
Washington University in St. Louis	Jun. 2016 - Jan. 2017
Topology aware multiple-material surface reconstruction	
 * Provide topological control for multiple-material surface reconstruction for cross-section. * Simple user interfaces for topology correction. * This work was presented in SIGGRAPH 2017 	rom a set of planar
Washington University in St. Louis	May 2015 - May 2016
Extrinsically smooth direction field	
 * Provide theoretical analysis of extrinsically smooth direction field for different problem settings. * Introduce a unified optimization framework that works on curves, surfaces and volume domain. * This work was presented in SMI 2016. 	
Engineering Project	
Washington University in St. Louis	Nov. 2014 - Apr. 2015
Holes detection and measurement in skull using CT data	
* Automatically detect and measure the topological holes in skull reconstruct from CT data.	
* A friendly user interface was provided for viewing the reconstructed skul	l and holes detected.
University of Science and Technology of China	Jan. 2014 - Jun. 2015
Real-time pedestrian detection * Build up a system for real-time and automatic detection of pedestrian on aggregation channel feature and additive boost.	videos based on

* Research Intern in Creative Intelligence Lab, working with Nathan Carr.

Sep. 2017 – Dec. 2018

Adobe Inc., San Jose, CA, USA

* Integrate multiple techniques for speeding up the processing including fast feature pyramid, soft cascade and positive window locating.

University of Science and Technology of China

Frame interpolation for fast moving object on low frame rate video

* Implement frame interpolation based on extraction, matching and transformation of motion regions for fast moving and deforming objects.

Technical Skills

Programming Languages: C/C++ (9 years), Matlab (9 years), Python (4 years), Mathematica, Java **APIs, libraries and tools:** Tensorflow (2 years), OpenGL, Qt, OpenCV, Gurobi, Eigen

<u>Talk</u>

"Topology-controlled Reconstruction of Multi-labelled Domains from Cross-sections" ACM SIGGRAPH 2017 Los Angeles, USA, 8/2017

"Extrinsically smooth direction field"

The International Geometry Summit 2016 (IGS2016) Berlin, German, 6/2016

Reference

Tao Ju

Professor at Washington University in St. Louis Vice Dean for Research at School of Engineering & Applied Science Email: taoju@wustl.edu

Nathan Carr

Principal Scientist & Research Manager at Adobe USA Email: <u>ncarr@adobe.com</u>

Yasutaka Furukawa

Assistant Professor at Simon Fraser University Principal Research Scientist at Zillow Group Email: furukawa@sfu.ca