Repairing Inconsistent Curve Networks on Non-parallel Cross-sections

Z. Y. Huang¹, M. Holloway¹, N. Carr², T. Ju¹

¹ Washington University in St. Louis, USA

² Adobe Inc., USA

Motivation: Image segmentation

3D Image Volume

Contours on cross-sections

Segmented shape

Motivation: Image segmentation

3D Image Volume

Contours on cross-sections

Segmented shape

Background: Reconstruction from cross-sections

- A well-studied problem dated back to 70s
- Parallel planes
 - Natural choice for 3D images, but may require many cross-sections to describe shape
- Non-parallel planes
 - Well-chosen planes can describe shape with fewer cross-sections [Boissonnat 07, Liu 08, Barequet 09, Bermano 11, Heckel 11, Zou 15, Holloway 16, Huang 17]

Background: Reconstruction from cross-sections

- A well-studied problem dated back to 70s
- Parallel planes
 - Natural choice for 3D images, but may require many cross-sections to describe shape
- Non-parallel planes
 - Well-chosen planes can describe shape with fewer cross-sections [Boissonnat 07, Liu 08, Barequet 09, Bermano 11, Heckel 11, Zou 15, Holloway 16, Huang 17]
 - Extension to model multi-labelled domains from multi-labelled cross-sections

Background: Consistency

- Methods handling non-parallel cross-sections require consistent input
 - Intersecting cross-sections share the same labelling along the intersection line

Consistent

Inconsistent

Background: Consistency

- All interpolating methods fail on inconsistent cross-sections
- Approximating methods work, but create surface artifacts

Background: where does inconsistency come from?

- Cross-sections are often created independently from each other
- We can ask the users/software to be more careful. But...
 - Adds labor and distraction
 - Requires changes to existing software
 - Cannot process existing data

Objective

- Given a set of (possibly inconsistent) multi-labelled non-parallel cross-sections
- Modify curves on each cross-section to restore consistency

Explicit approach

- Geometric deformation of the curve network on each plane
- Difficult to enforce consistency
 - Both the number and location of intersections are unknown
 - Deformation may introduce new intersections
- Cannot change curve network topology
 - May result in large deformations

Implicit approach

- Represent the curve network on each cross-section by an implicit function
- Modify the implicit functions
- Reconstruct the curve networks from the modified functions

11

Implicit approach

- Easy to enforce consistency
 - As inequality constraints on the implicit functions
- Flexible in topological changes

Implicit representation

- Representing a *n*-labelled plane:
 [Losasso 06, Feng 10, Yuan 12, Huang 17]
 - Define *n* scalar functions $f \downarrow 1(x), ..., f \downarrow n(x)$
 - Label as index of the function that achieves maximum value:

 $Label(x) = \operatorname{argmax} \downarrow i \quad f \downarrow i(x)$

 Labelled regions are bounded by a nonmanifold curve network

Implicit representation

- Representing a *n*-labelled plane: [Losasso
 06, Feng 10, Yuan 12, Huang 17]
 - Define *n* scalar functions $f \downarrow 1(x), ..., f \downarrow n(x)$
 - Label as index of the function that achieves maximum value:

 $Label(x) = \operatorname{argmax} \downarrow i \quad f \downarrow i(x)$

 Labelled regions are bounded by a nonmanifold curve network {*f*,*l*,1,*f*,*l*,2,*f*,*l*,3}

Implicit representation

- Define initial scalar functions as signed distance functions
 - Triangulate each cross-section
 - Compute $f \downarrow i \uparrow P(v)$ for label *i* at vertex v on plane *P* as signed distance to boundaries of label *i*

Problem formulation

- Given implicit functions on each cross-section
- Modify the functions so that:
 - Labelling is consistent on intersection lines
 - Distortion to curve networks is minimized

Consistency constraints

• Consider vertex v on the intersection line between cross-sections P,Q

- $f \downarrow 1, ..., n \uparrow P(v), f \downarrow 1, ..., n \uparrow Q(v)$: scalar values on plane P, Q
- Suppose the final label at v is known, l(v)
 - Then function value of l(v) is greater than any other label at v

 $f\downarrow l(v)\uparrow P(v) \ge f\downarrow i\uparrow P(v) + \varepsilon, \ f\downarrow l(v)\uparrow Q(v) \ge f\downarrow i\uparrow Q(v) + \varepsilon,$ $\forall i \ne l(v)$

Since we don't know l(v), we leave it as a variable.

Deformation energy

- Deviation from input curve networks
 - How far have the curves moved? (zero order)
 - How much have the curve tangents changed? (1st order)

 $E(f) = \lambda \sum P, \quad v, \quad i \uparrow = (f \downarrow i \uparrow P(v) - f \downarrow i \uparrow P(v)) \uparrow 2$

(zero order)

+ ΣP , v, $i,j\uparrow (G(f\downarrow i\uparrow P - f\downarrow j\uparrow P)(v) - G(f\downarrow i\uparrow P - f\downarrow j\uparrow P)(v))\uparrow 2$ (1st order)

f: input function; L: discrete gradient

Mixed-Integer Programming (MIP)

- Continuous variables: $f\downarrow i\uparrow P(v)$
- Integer variables: l(v)
- Minimize: E(f)
- Subject to: $f \downarrow l(v) \uparrow P(v) \ge f \downarrow i \uparrow P(v) + \varepsilon$

// Implicit function values at all vertices
// Labels at vertices on intersection lines
// Quadratic deformation energy
// Consistency constraints

Optimization

- MIPs are computationally expensive to solve
- We propose an efficient solution strategy by iteratively solving Quadratic Programming problems

Quadratic Programming (QP)

- For a given set of labels l(v) at each vertex v on intersection lines:
 - Continuous variables: $f\downarrow i\uparrow P(v)$
 - Minimize: E(f)
 - Subject to: $f\downarrow l(v)\uparrow P(v)\geq f\downarrow i\uparrow P(v)+\varepsilon$

// Implicit function values at all vertices
// Quadratic deformation energy
// Consistency constraints

Optimization strategy

- Start with an initial set of labels on the intersection lines
 - By averaging values from multiple planes
- Solve QP
- Update labels and repeat
 - Until energy no longer decreases

Updating labels

- A set of labels defines a set of inequality constraints
 - A convex cell in the solution space
- Minimizer of QP lies on the boundary of the cell
 - Otherwise, the input is already consistent

Updating labels

- A set of labels defines a set of inequality constraints
 - A convex cell in the solution space
- Minimizer of QP lies on the boundary of the cell
 - Otherwise, the input is already consistent
 - Each hyperplane containing the minimizer corresponds to a pair of labels l(v), *i* with similar values at some vertex v
 - Setting l(v)=i potentially lowers the energy

Updating labels

- Sort all hyperplanes by magnitude of energy gradient across the hyperplane
- Visit each hyperplane, flip label, and compute QP of the new label set
- Take the next label set as the first hyperplane with positive reduction in energy

Experiments: Parameter selection

- Choosing λ : trade-off proximity with shape preservation
 - Energy = λ * 0-order difference + 1st-order difference

Experiments: Performance

- Comparing with off-the-shelf MIP solver (Gurobi)
 - 2-labels input: increasing number of cross-section planes
 - Our method produces similar energy but using significantly less time

	# planes	Our energy	Gurobi energy	Our Time (s)	Gurobi Time (s)
	2	16.65	16.65	0.845	1.05
	3	24.95	24.95	1.253	11.28
	4	25.02	25.03	3.024	33.16
	5	29.55	29.55	33.218	619.91

Atrium (2 labels, 5 planes, time: 1 sec)

• Ferret brain (2 labels, 10 planes, time: 66 sec)

• Ferret brain (2 labels, 10 planes, time: 66 sec)

• Livers (5 planes, 4 labels , total time: 25s)

Inconsistent

• Livers (5 planes, 4 labels , total time: 25s)

Consistent

• Mouse brain (6 planes, 7 labels, total time: 421s)

Conclusion

- An algorithm for restoring consistency to non-parallel cross-sections
 - Formulating and solving an MIP on implicit functions
 - Allowing existing surface reconstruction methods to work on imperfect cross-section inputs

- Limitations and future work
 - Improving deformation energy to better preserve smooth/sharp features
 - Integration into interactive volume segmentation (real-time feedback to users)

