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Background:	Reconstruction	from	cross-sections	

•  A	well-studied	problem	dated	back	to	70s	

•  Parallel	planes	
–  Natural	choice	for	3D	images,	but	may	require	

many	cross-sections	to	describe	shape	

•  Non-parallel	planes	
–  Well-chosen	planes	can	describe	shape	with	fewer	

cross-sections	[Boissonnat	07,	Liu	08,	Barequet	09,	Bermano	11,	
Heckel	11,	Zou	15,	Holloway	16,	Huang	17]	
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Background:	Reconstruction	from	cross-sections	

•  A	well-studied	problem	dated	back	to	70s	

•  Parallel	planes	
–  Natural	choice	for	3D	images,	but	may	require	

many	cross-sections	to	describe	shape		

•  Non-parallel	planes	
–  Well-chosen	planes	can	describe	shape	with	fewer	

cross-sections	[Boissonnat	07,	Liu	08,	Barequet	09,	Bermano	11,	
Heckel	11,	Zou	15,	Holloway	16,	Huang	17]	

–  Extension	to	model	multi-labelled	domains	from	
multi-labelled	cross-sections	
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Background:	Consistency	

•  Methods	handling	non-parallel	cross-sections	require	consistent	input	

–  Intersecting	cross-sections	share	the	same	labelling	along	the	intersection	line	

Consistent	 Inconsistent	



Background:	Consistency	

•  All	interpolating	methods	fail	on	inconsistent	cross-sections	

•  Approximating	methods	work,	but	create	surface	artifacts	

[Bermano	11]	



Background:	where	does	inconsistency	come	from?	

•  Cross-sections	are	often	created	independently	from	each	other	

•  We	can	ask	the	users/software	to	be	more	careful.	But…	

–  Adds	labor	and	distraction	
–  Requires	changes	to	existing	software	
–  Cannot	process	existing	data	



Objective	

•  Given	a	set	of	(possibly	inconsistent)	multi-labelled	non-parallel	cross-sections	

•  Modify	curves	on	each	cross-section	to	restore	consistency	
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Explicit	approach	

•  Geometric	deformation	of	the	curve	network	on	each	plane	

•  Difficult	to	enforce	consistency	
–  Both	the	number	and	location	of	intersections	are	unknown	

–  Deformation	may	introduce	new	intersections	

•  Cannot	change	curve	network	topology	
–  May	result	in	large	deformations	
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Implicit	approach	

•  Represent	the	curve	network	on	each	cross-section	by	an	implicit	function	

•  Modify	the	implicit	functions	

•  Reconstruct	the	curve	networks	from	the	modified	functions	
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Implicit	approach	

•  Easy	to	enforce	consistency	
–  As	inequality	constraints	on	the	implicit	functions	

•  Flexible	in	topological	changes	
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Implicit	representation	
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𝑓↓1 	 𝑓↓2 	 𝑓↓3 	

•  Representing	a	𝑛-labelled	plane:					
[Losasso	06,	Feng	10,	Yuan	12,	Huang	17]	

–  Define 𝑛 scalar	functions	𝑓↓1 (𝑥),…, 𝑓↓𝑛 (𝑥)	

–  Label	as	index	of	the	function	that	achieves	
maximum	value:	

𝐿𝑎𝑏𝑒𝑙(𝑥)= argmax ↓𝑖 � 𝑓↓𝑖 (𝑥) 	

–  Labelled	regions	are	bounded	by	a	non-
manifold	curve	network	



Implicit	representation	
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𝐿𝑎𝑏𝑒𝑙	
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Implicit	representation	
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•  Define	initial	scalar	functions	as	signed	distance	functions	
–  Triangulate	each	cross-section	
–  Compute	 𝑓↓𝑖↑𝑃 (𝑣)	for	label	𝑖	at	vertex	𝑣 on	plane	𝑃	as	signed	distance	to	boundaries	of	label	𝑖	



•  Given	implicit	functions	on	each	cross-section	

•  Modify	the	functions	so	that:	

–  Labelling	is	consistent	on	intersection	lines	
–  Distortion	to	curve	networks	is	minimized	

Problem	formulation	
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Consistency	constraints	

•  Consider	vertex	𝑣	on	the	intersection	line	between	cross-sections	𝑃,𝑄	
–  𝑓↓1,…,𝑛↑𝑃 (𝑣), 𝑓↓1,…, 𝑛↑𝑄 (𝑣):	scalar	values	on	plane	𝑃,𝑄	

•  Suppose	the	final	label	at	𝑣	is	known,	𝑙(𝑣)	
–  Then	function	value	of	𝑙(𝑣)	is	greater	than	any	other	label	at	𝑣	

•  Since	we	don’t	know	𝑙(𝑣),	we	leave	it	as	a	variable.	

𝑣	

𝑃	

𝑄	𝑓↓𝑙(𝑣)↑𝑃 (𝑣)≥ 𝑓↓𝑖↑𝑃 (𝑣)+𝜀,  𝑓↓𝑙(𝑣)↑𝑄 (𝑣)≥ 𝑓↓𝑖↑𝑄 (𝑣)+𝜀,  
∀𝑖≠𝑙(𝑣)	
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Deformation	energy	

•  Deviation	from	input	curve	networks	

–  How	far	have	the	curves	moved?	(zero	order)	

–  How	much	have	the	curve	tangents	changed?	(1st	order)	

𝐸(𝑓)    =𝜆∑𝑃,   𝑣,   𝑖↑▒( 𝑓↓𝑖↑𝑃 (𝑣)− 𝑓 ↓𝑖↑𝑃 (𝑣))↑2  	
	

𝑓 :	input	function;	𝐿:	discrete	gradient	

+∑𝑃,   𝑣,   𝑖,𝑗↑▒(𝐺(𝑓↓𝑖↑𝑃 − 𝑓↓𝑗↑𝑃 )(𝑣)−𝐺(𝑓 ↓𝑖↑𝑃 − 𝑓 ↓𝑗↑𝑃 )(𝑣))↑2  	

(zero	order)	

(1st	order)	
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Mixed-Integer	Programming	(MIP)	

•  Continuous	variables:	𝑓↓𝑖↑𝑃 (𝑣)	 	 	//	Implicit	function	values	at	all	vertices	

•  Integer	variables:	𝑙(𝑣)	 	 	 	//	Labels	at	vertices	on	intersection	lines		

•  Minimize:	𝐸(𝑓)	 	 	 	 	//	Quadratic	deformation	energy	

•  Subject	to:	𝑓↓𝑙(𝑣)↑𝑃 (𝑣)≥ 𝑓↓𝑖↑𝑃 (𝑣)+𝜀	 	 	//	Consistency	constraints		
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Optimization	

•  MIPs	are	computationally	expensive	to	solve	

•  We	propose	an	efficient	solution	strategy	by	iteratively	solving	Quadratic	
Programming	problems	
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Quadratic	Programming	(QP)	

•  For	a	given	set	of	labels	𝑙(𝑣)	at	each	vertex	𝑣	on	intersection	lines:	
–  Continuous	variables:	𝑓↓𝑖↑𝑃 (𝑣)	 	 	//	Implicit	function	values	at	all	vertices	

–  Minimize:	𝐸(𝑓)	 	 	 	 	//	Quadratic	deformation	energy	

–  Subject	to:	𝑓↓𝑙(𝑣)↑𝑃 (𝑣)≥ 𝑓↓𝑖↑𝑃 (𝑣)+𝜀	 	 	//	Consistency	constraints		



22	

Optimization	strategy	

•  Start	with	an	initial	set	of	labels	on	the	intersection	lines		
–  By	averaging	values	from	multiple	planes	

•  Solve	QP	
•  Update	labels	and	repeat	

–  Until	energy	no	longer	decreases	
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Updating	labels	

•  A	set	of	labels	defines	a	set	of	inequality	constraints	
–  A	convex	cell	in	the	solution	space	

•  Minimizer	of	QP	lies	on	the	boundary	of	the	cell	

–  Otherwise,	the	input	is	already	consistent	
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Updating	labels	

•  A	set	of	labels	defines	a	set	of	inequality	constraints	
–  A	convex	cell	in	the	solution	space	

•  Minimizer	of	QP	lies	on	the	boundary	of	the	cell	

–  Otherwise,	the	input	is	already	consistent	
–  Each	hyperplane	containing	the	minimizer	corresponds	to	a	pair	

of	labels	𝑙(𝑣),𝑖	with	similar	values	at	some	vertex	𝑣	

–  Setting	𝑙(𝑣)=𝑖	potentially	lowers	the	energy	



25	

Updating	labels	

•  Sort	all	hyperplanes	by	magnitude	of	energy	gradient	
across	the	hyperplane	

•  Visit	each	hyperplane,	flip	label,	and	compute	QP	of	the	
new	label	set		

•  Take	the	next	label	set	as	the	first	hyperplane	with	
positive	reduction	in	energy	



Experiments:	Parameter	selection	
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•  Choosing	𝜆:	trade-off	proximity	with	shape	preservation	

–  Energy	=	𝜆	*	0-order	difference	+	1st-order	difference	

𝜆=100	 𝜆=1	 𝜆=0.01	



Experiments:	Performance	
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•  Comparing	with	off-the-shelf	MIP	solver	(Gurobi)	

–  2-labels	input:	increasing	number	of	cross-section	planes	

–  Our	method	produces	similar	energy	but	using	significantly	less	time	

#	planes	 Our	
energy	

Gurobi	
energy	

Our	
Time	(s)	

Gurobi	
Time	(s)	

2	 16.65	 16.65	 0.845	 1.05	

3	 24.95	 24.95	 1.253	 11.28	

4	 25.02	 25.03	 3.024	 33.16	

5	 29.55	 29.55	 33.218	 619.91	



Experiments:	More	examples	
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•  Atrium	(2	labels,	5	planes,	time:	1	sec)	

Input	 Consistent	output	 Surface	from	input	 Surface	from	output	

[Bermano	11]	



Experiments:	More	examples	
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•  Ferret	brain	(2	labels,	10	planes,	time:	66	sec)	

𝑷	

𝑷	
Inconsistent	



Experiments:	More	examples	
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•  Ferret	brain	(2	labels,	10	planes,	time:	66	sec)	

𝑷	

𝑷	
Consistent	



Experiments:	More	examples	
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•  Livers	(5	planes,	4	labels	,	total	time:	25s)	

𝑷	

𝑷	

𝑸	

𝑸	

Inconsistent	



Experiments:	More	examples	
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•  Livers	(5	planes,	4	labels	,	total	time:	25s)	

𝑷	

𝑷	

𝑸	

𝑸	

Consistent	



Experiments:	More	examples	
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•  Mouse	brain	(6	planes,	7	labels,	total	time:	421s)	

Inconsistent	 Consistent	



Conclusion	
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•  An	algorithm	for	restoring	consistency	to	non-parallel	cross-sections	

–  Formulating	and	solving	an	MIP	on	implicit	functions	

–  Allowing	existing	surface	reconstruction	methods	to	work	on	imperfect	cross-section	inputs	

•  Limitations	and	future	work	

–  Improving	deformation	energy	to	better	preserve	smooth/sharp	features	

–  Integration	into	interactive	volume	segmentation	(real-time	feedback	to	users)	


