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Abstract
In this work we present the first algorithm for restoring consistency between curve networks on non-parallel cross-sections.
Our method addresses a critical but overlooked challenge in the reconstruction process from cross-sections that stems from the
fact that cross-sectional slices are often generated independently of one another, such as in interactive volume segmentation.
As a result, the curve networks on two non-parallel slices may disagree where the slices intersect, which makes these cross-
sections an invalid input for surfacing. We propose a method that takes as input an arbitrary number of non-parallel slices,
each partitioned into two or more labels by a curve network, and outputs a modified set of curve networks on these slices that
are guaranteed to be consistent. We formulate the task of restoring consistency while preserving the shape of input curves as a
constrained optimization problem, and we propose an effective solution framework. We demonstrate our method on a data-set
of complex multi-labeled input cross-sections. Our technique efficiently produces consistent curve networks even in the presence
of large errors.

CCS Concepts
•Computing methodologies → Mesh models; Volumetric models;

1. Introduction

1.1. Motivation

Surface reconstruction from cross-sectional curves has been exten-
sively studied in geometric processing for the past few decades.
One of the primary applications of this problem is in interactive
image segmentation, particularly for 3D volumes that arise from
biomedical imaging (e.g., MRI or CT scans). In a typical session,
an expert user would delineate boundaries of a region of interest
(e.g., an organ) on selected 2D slices of the 3D volume, and the
computer would reconstruct a surface that interpolates those cross-
sectional curves. Even with the advances in automatic segmenta-
tion methods, interactive segmentation remains a standard practice
since it is difficult for existing automated methods to perform ac-
curately and consistently on real-world imaging data.

The majority of reconstruction algorithms are specialized for
parallel cross-sections, in part due to the natural choice of axial
planes of 3D volumes for boundary delineation. A key limitation
of using parallel slices, however, is the restriction of the slice ori-
entation. Allowing a user to choose planes whose orientations are
adapted to the 3D shape has the potential to lower the number
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of planes needed to segment the shape, and thereby reducing hu-
man delineation time. This hypothesis has motivated the develop-
ment of several reconstruction algorithms that are capable of han-
dling arbitrarily oriented cross-sections [BM07, LBD∗08, BV09,
BVG11, HKHP11, ZHCJ15, HGJ16, HZCJ17]. Some of these al-
gorithms are further capable of reconstructing a surface network
that partitions the space into multiple labels (e.g., air, bone, mus-
cle, etc.) given multi-labelled slices delineated by curve networks
[LBD∗08, BV09, BVG11, HZCJ17].

Despite the availability of these algorithms for surfacing non-
parallel slices, a critical but overlooked challenge in deploying
these algorithms in practice is making sure that the input slices to
these algorithms are consistent. A set of slices is said to be con-
sistent if, for any two slices that intersect at a line l, the labelling
induced by the curve networks on each slice agrees on l (see Fig-
ure 1). The majority of surfacing algorithms require a consistent
input. Unfortunately, many applications that produce slices for sur-
facing do not guarantee consistency among the slices. For example,
in most off-the-shelf software for interactive 3D volume segmenta-
tion, an expert delineates boundaries on each slice independently,
and there is no mechanism in the software to enforce consistency
among what the expert draws on intersecting slices.

For inputs consisting of only few slices with simple shapes (such
as the one in Figure 1), manual corrections may be possible to re-

submitted to EUROGRAPHICS 2018.



2 Z.Y Huang & M. Holloway & N. Carr & T. Ju / Repairing Inconsistent Curve Networks

Figure 1: Curve networks on two intersecting planes (p1,p2) with
inconsistent (left) and consistent (right) labeling. The pictures at
the bottom show the labeling on each plane as well as the labeling
from the other plane on the intersection line (l).

store the consistency. However, the task can become intractable
even for modest size data sets (see Figures 6, 7, 8, 9, 10). We there-
fore propose an algorithm to automatically restore consistency. Our
algorithm fills the gap between real-world data (which are often
inconsistent) and existing surfacing algorithms (which typically re-
quire consistency), hence allowing these algorithms to be more eas-
ily adopted in practice.

1.2. Problem statement

Restoring label consistency can be stated as a constrained curve
deformation problem. We are given a set of planes, each divided by
a curve network into regions equipped with labels 1, . . . ,n (n≥ 2).
We wish to deform the curve network on each plane in a minimal
way to guarantee that the labels on any pair of intersecting planes
are consistent along their intersection line.

While geometric deformation has been extensively studied in the
past (see a brief review in Section 2), our problem is unique in that
the constraints are not fully determined in advance: while the la-
beling of the planes needs to agree at their intersection lines, the
finally agreed labels along the intersection lines are not known a
priori, especially where the labels on the planes differ. To tackle the
challenge, we propose a novel consistency-constrained implicit de-
formation method. Representing the curve networks on each cross-
section by implicit functions, we formulate the deformation task
as a constrained optimization problem on the function values with
a quadratic energy objective. As our optimization formulation in-
volves both real-valued and integer variables, obtaining a solution
efficiently can be challenging. To this end, we propose a solu-
tion strategy tailored to our specific problem. When tested on real-
world inputs, our method runs significantly faster then off-the-shelf
solvers while achieving similar energy values.

Contributions We present the first algorithm for restoring con-
sistency to non-parallel cross-sections. Our algorithm would al-
low surfacing algorithm for non-parallel cross-sections to be able
to process a much wider range of inputs that are often generated
by practical applications. Technically, we make two main contribu-
tions:

1. We formulate restoration of label consistency as a constrained
non-linear optimization problem using a multi-labelled implicit
representation.

2. We propose a novel solution strategy of this challenging opti-
mization problem. The solution is shown to be efficient and ef-
fective on real world data sets.

2. Relate work

We briefly review two bodies of work that are related to ours,
namely reconstruction from cross-sections and curve deformations.

Reconstruction from cross-sections Since the 70’s, extensive re-
search has been conducted on reconstructing surfaces from cross-
sectional curves. Earlier method focus on handling parallel cross-
sections that are partitioned by closed curve loops into inside
and outside regions [Kep75, FKU77, Boi88, BS96, OPC96, TO99,
BGLSS04, BV07]. The key idea in these methods is to divide the
space (or more practically, a bounding box) by the cross-sectional
planes into “cells” and build surface pieces within each cell. When
all planes are parallel, all cells have a uniform and simple shape (a
slab) that is bounded by two planes. If the planes are arbitrarily ori-
ented, each cell may be a general convex polytope bounded by an
arbitrary number of planes, which makes the surfacing task more
challenging.

Over the past decade, research on cross-section-based recon-
struction has focused on handling non-parallel inputs. A num-
ber of methodologies have emerged including Delaunay mesh-
ing [BM07], projecting curves onto a medial structure [LBD∗08,
BV09], solving implicit functions [BVG11, HKHP11, ZHCJ15,
HZCJ17], and template fitting [HGJ16]. Some of these algorithms
are capable of handling even more general inputs such as multi-
labelled cross-sections [LBD∗08, BV09, BVG11, HZCJ17], partial
planes [BV09], and unknown regions [BVG11].

With the exception of [BVG11], all of the above methods at-
tempt to exactly interpolate the input cross-sections, and hence they
require a consistent input. The method of [BVG11] constructs and
contours an implicit function on a cubical lattice, resulting in a sur-
face that approximates the input curves. While the method is able to
process inconsistent inputs, it creates notable artifacts (e.g., unnatu-
ral pinching) where the cross-sections disagree along their intersec-
tions [VMB∗15]. As we shall demonstrate later (Figure 6), restor-
ing consistency to the cross-sections can significantly improve the
smoothness of surfaces created by [BVG11].

Geometric deformations Deformation of geometry, being 2D
curves or 3D surfaces, is a major research topic in computer graph-
ics and related domains. Broadly speaking, deformation methods
can be classified into explicit or implicit ones based on how the
deformation is represented. Explicit methods either deform the ge-
ometry itself, by computing displacements of points on the geom-
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etry [BS08], or deform the embedding space around the geom-
etry, using some control structure such as lattices [SP86], cages
[JSW05], skeletons [MTLT88], and points [SMW06]. On the other
hand, implicit methods represent the geometry as the level set of
an implicit function in 2D (for curves) or 3D (for surfaces) and
indirectly deform the curve by modifying the values of the func-
tions [BB97]. Implicit representations are particularly attractive for
interactive editing due to the ease in manipulating the functions
[BW90, SWG05, SWSJ07]. Other popular ways for manipulating
the functions include interpolating between given functions (as in
shape metamorphosis [Hug92, COSL98, BW01, TO05]), associat-
ing the function with a particle system [DG95], evolving the func-
tion with a user-specified speed function (as in the powerful level-
sets method [Set99, TO∗03]), and interpolating functional or po-
sitional constraints using a variational framework [TO02, KHR02,
HKHP11, YYW12].

Deformation methods aim at fulfilling well-defined objectives
specified by the user or by the application. Examples of such ob-
jectives are handles or sketches (as in interactive editing), a target
shape (as in shape metamorphosis or registration), or intensity fea-
tures in an image (as in image segmentation). We are not aware of
any deformation method that is designed for consistency objectives
like those in our problem. Our method falls into the class of varia-
tional implicit methods [TO02,KHR02,HKHP11,YYW12]. Unlike
existing methods that formulate deterministic constraints as simple
equalities or inequalities, our method uses additional integer vari-
ables to encode the uncertainty of labelling along intersection lines,
which results in a more challenging optimization problem.

3. Problem formulation

A perhaps tempting strategy for restoring consistency is to directly
deform the input curve networks. Such strategy would find some
minimum-energy displacement of the curve vertices constrained by
the requirement that, for any two slices intersecting at line l, the
curve networks on both slices should intersect with l at the same
set of locations. However, formulating such constraint is difficult,
since we do not know the number or the location of these intersec-
tion points on l. Furthermore, the topology of the curve networks
remains fixed in this strategy, which reduces the flexibility of the
deformation.

We adopt a different strategy that makes it easy to formulate
the consistency constraints and also permits topological changes
of the curve networks. The curve network on each plane is implic-
itly represented by functions over the plane, and curve deformation
is indirectly achieved by modifying the functions. In this represen-
tation, consistency among slices can be formulated by linear in-
equality constraints along the intersection lines after introducing
additional integer variables (i.e., the labels of vertices on the inter-
section lines). By expressing the amount of curve deformation as
an energy term on the functions, we can cast the task of restoring
consistency as a constrained mixed-integer optimization problem.

We first discuss the implicit representation of curve networks on
each plane in Section 3.1. After introducing our deformation energy
using this representation in Section 3.2, we present our optimiza-
tion formulation in Section 3.3.

3.1. Implicit representation

Curves that partition the plane into two labels can be implicitly rep-
resented as the level set of a scalar function. To represent a curve
network that partitions the plane into n > 2 labels, we consider a
commonly used implicit representation that utilizes a vector func-
tion [LSSF06, FJW10, YYW12, HZCJ17]. We first briefly review
such representation, and then discuss our choice of the initial vec-
tor function and how it is discretized on input cross-sections.

Implicit representation To represent an n-labelled domain, we
consider a vector function ~f (~x) = { f1(~x), . . . , fn(~x)} where each
fi is a continuous scalar function and ~x is a point in the domain.
The value of fi(~x) can be intuitively understood as the “strength”
of label i at~x. We assign each point~x the label that has the maximal
strength,

Label(~x) = arg max
i=1,...,n

fi(~x). (1)

We are interested in the boundary between regions of different la-
bels, known as the interface set [HZCJ17]. More precisely,~x is on
the interface set if Label(~x) contains more than one label. Interface
sets are natural generalizations of level sets, since the interface set
for n = 2 labels are equivalent to the level set of some scalar func-
tion [HZCJ17]. For n > 2 labels, an interface set in the 2D domain
can be made up of curve segments meeting at non-manifold junc-
tions (where three or more labelled regions meet).

Initial vector function We seek a vector function ~f whose inter-
face set reproduces an input curve network. This is equivalent to
asking that the labelling defined by ~f (Equation 1) coincides with
the labelling of regions partitioned by the network. Our definition
of ~f is based on signed distance functions. Specifically, consider a
point ~x lying inside a region with input label i. We set f j(~x) to be
positive only if j = i and negative for all other labels j. The magni-
tude of f j(~x) is set as the Euclidean distance from ~x to the nearest
curves that bound regions with label j. If label j is absent from the
plane, we set f j(~x) = −∞. It is easy to see that this definition of
~f ensures that Label(~x) = i. Figure 2 illustrates the vector function
over a three-labelled 1D domain.

While one could define the vector function in more sophisticated0
Figure 2: Vector function ~f = { f1, f2, f3} defined as signed dis-
tance functions over a three-labelled 1D domain. Note that the dif-
ference function f2− f3 (magenta dotted graph) is a distance-like
function locally at the interface between labels 2 and 3.
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Figure 3: Overview of our algorithm. Each input slice (a) is first triangulated (b), and a vector function is computed per slice to reproduce the
input labels (c). Then functions on all slices are optimized together to enforce label consistency while minimizing deformations (d). Finally,
the output curve networks are extracted as the interface sets of the optimized functions (e).

ways (e.g., using higher degree polynomials [YYW12]), we chose
signed distance functions not only due to its simplicity but also be-
cause of the convenience it offers for formulating the deformation
energy (Section 3.2). A key observation is that a Euclidean distance
function has a constant gradient magnitude, hence a small change
to the function values leads to a bounded spatial displacement of
its level set. Also, adding a constant function to a distance func-
tion leads to level sets with similar shapes (i.e., offset curves). As
a result, the magnitude and variation of the change to a distance
function correlates with the amount of deformation of the level set.
This is not true for general smooth functions. Note that the interface
set between two labels i, j coincides with the zero-level set of their
difference function, fi− f j. In our signed-distance-based definition
of ~f above, fi− f j is similar to a signed distance function (with a
constant gradient magnitude of 2) in the vicinity of the interface set
between labels i and j (see Figure 2). As a result, we can approxi-
mately measure the deformation of the interface set between labels
i, j by the magnitude and variation in the change to the difference
function fi− f j, as we shall elaborate in Section 3.2.

Discretization We use piecewise linear vector functions encoded
by values on vertices of a triangulation. A cross-section plane is
discretized by a constrained Delaunay triangulation where the con-
strained set includes edges and vertices of the curve network as
well as the intersection lines with other planes. For consistency be-
tween cross-sections, all planes that share one intersection line l use
a common set of vertices and edges on that line. This set is created
by first uniformly sampling l and then adding new vertices where
l intersects with the curve networks or with other intersection lines

(e.g., where three or more planes meet at a point). The sampling
density along l is chosen to be sufficiently high to capture the in-
consistency among the planes. We then use Shewchuk’s Triangle
package [She96] to compute the triangulation. Figure 3 (b) shows
the triangulation of the two slices on the left of Figure 1.

After triangulation, we compute a vector ~f (v) =
{ f1(v), . . . , fn(v)} at each vertex v as defined above. To ob-
tain the region label at each vertex, and assuming that each input
curve is equipped with labels on its two sides, we use a flooding
process over the triangulation to obtain the labels of vertices that
are not on the curve network. To avoid numerical difficulties, for
each vertex v on the input curve network that bounds regions with
labels Φ ⊆ {1, . . . ,n}, we assign v the label with the lowest index
in Φ and set the magnitude ‖ fi(v)‖ for all i ∈ Φ to be a small
positive constant ε. Figure 3 (c) visualizes, for each slice in (b), the
three scalar functions corresponding to the three labels.

Interface set reconstruction Given the initial vector functions, the
core of our method (Section 4) is an optimization process that mod-
ifies these functions to ensure label consistency between slices. Af-
ter optimization, we need to extract the interface set of the mod-
ified vector function on each slice as the output curve network.
To do so, we use a dual scheme akin to that in previous works
[FJW10] but over a triangulation. We create two types of points
on the output curve network, either on triangle edges (called edge
points) or inside triangle faces (called face points). For each trian-
gle edge between two vertices with different labels i, j, we locate
the edge point as the zero-crossing of the function fi − f j along
that edge. For each triangle whose vertices do not have a common
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label, we locate the face point as the centroid of the edge points.
Finally, to create the network, we connect each face point inside
a triangle to the edge points on the triangle’s edges. To produce
smoother results while conforming to vertex labelling, we fair the
curve networks using the non-shrinking centroid-averaging scheme
of Taubin [Tau95] while constraining each edge (resp. face) point
to lie on the respective triangle edge (resp. face). Figure 3 (e) shows
the interface sets from the modified functions in (d).

3.2. Deformation energy

While there are many ways to modify the input to achieve consis-
tency, we are looking for a way that best preserves both the location
and shape of the curve networks. As mentioned earlier, our implicit
representation makes it possible to capture the amount of curve de-
formation by the magnitude and variation in the changes to (the
difference of) the implicit functions.

Consider an initial vector function ~f in any domain, and let the
modified function be ~f +~g where ~g is another vector function.
In the continuous setting, our deformation energy has the integral
form

E(~g) =
∫

λ ∑
i∈R
‖gi(~x)‖2 + ∑

i, j∈R
‖∇(gi(~x)−g j(~x))‖2d~x (2)

where R ∈ {1, . . . ,n} is the set of labels where fi 6= −∞ for any
i ∈ R. The first term inside the integral measures the magnitude
of the change to each scalar function, and the second term mea-
sures the variation (as Dirichlet energy) of the change to the dif-
ference between scalar functions. The two terms are balanced by a
user-specified constant λ. Note that penalizing the first term has the
indirect effect of penalizing the change to the difference between
scalar functions, but this term additionally acts as a regularizer to
prevent spurious solutions of~g that differ by a constant function.

For a piecewise linear vector function ~g over a triangulation of
the plane, the integral energy in Equation 2 can be equivalently
expressed in the following matrix form

E(g) = gT Mg (3)

where g is a flattened list of values gi(v) for all vertices v in the
triangulation and labels i ∈ R. The matrix M encodes the geomet-
ric structure of the triangulation and can be derived from Equation
2 using integrals of barycentric coordinates over triangles. Specifi-
cally, let Ma,b denote the |R|×|R| submatrix whose top-left position
in M is {(a−1)|R|+1,(b−1)|R|+1}. The submatrix is non-zero
only if the a-th and b-th vertices share a triangle edge, in which
case it has the form

Ma,b =

{
λ∑t∈Ta

σt I|R|+∑c∈Va
ωa,cH|R|, if a = b

λ

2 ∑t∈Ta,b
σt I|R|−ωa,bH|R|, if a 6= b

(4)

where Ta,Va are the list of triangles and vertices in the 1-ring neigh-
borhood of the a-th vertex, Ta,b is the list of triangles containing
both the a-th and b-th vertices, σt is the area of triangle t, ωa,b is
the cotangent weights [PP93] for the edge between the a-th and b-th
vertices, Im is the identify matrix of size m, and Hm is the Laplacian
matrix of a complete graph with m nodes.

3.3. Optimization formulation

We wish to modify the implicit functions on all planes to achieve
two goals. First, any vertex v shared by multiple planes should
have the same label on those planes. That is, on each of those
planes, the corresponding scalar function of that label should be
no smaller than the function of any other label at v. Second, the
sum of the deformation energy (E in Equation 3) over all planes
should be minimized. Hence we have an optimization problem with
a quadratic objective function (the second goal) and linear inequal-
ity constraints (the first goal). Note that formulating the inequality
constraints requires the knowledge of the final label of each vertex
on the intersection lines between slices. As a result, we formulate
a mixed integer problem that solves for both function values at all
vertices (which are real-valued) and labels at those vertices on in-
tersection lines (which are integers).

We now detail the formulation, starting with some notations. Let
P be the set of triangulated planes and ~f p be the initial vector func-
tion on each plane p ∈ P. Let I be the set of all vertices on the
intersection lines between planes, and denote by Pv the planes on
which v lies. Note that we need to store at a vertex v ∈ I multiple
vectors ~f p(v), one for each plane p ∈ Pv. Since not all labels are
present on every plane, we denote by Rp the set of labels present
on the plane p and Rv the set of labels present on all planes p ∈ Pv.
In the example of Figure 3, the input planes are P = {p1, p2}, and
Pv = P for any vertex v on the intersection line. As both planes
contain three labels, we have Rp1 = Rp2 = Rv = {1,2,3}.

We solve for the change in the vector function ~f p on each plane
p, denoted by the vector function ~gp (see Figure 3 (c,d)), as well
as one integer label L(v) ∈ Rv at each vertex v ∈ I. Rewriting~gp as
a flat list gp that consists of gp

i (v) for each vertex v on p and each
label i ∈ Rp, the optimization objectives are:

Minimize: ∑
p∈P

gT
p Mp gp (5)

Subject to: gp
L(v)(v)+ f p

L(v)(v)≥ gp
i (v)+ f p

i (v)+ ε,

∀v ∈ I, p ∈ Pv, i ∈ Rp, i 6= L(v)
(6)

This formulation minimizes the sum of deformation energy over all
planes (Equation 5) while enforcing consistency of labelling over
all vertices on the plane intersections (Equation 6). Here, Mp is the
matrix used in Equation 3 over the triangulated plane p.

As the number of vertices on all planes can be large (typically
thousands), solving the optimization problem as formulated above
can be prohibitively expensive. To reduce the problem size, we
make two observations. First, the linear inequalities in (6) only in-
volve function values at vertices on the intersection lines (I). Sec-
ond, since the deformation energy is quadratic, the minimal energy
after fixing the values at a subset of the vertices (e.g., I) can be ex-
pressed as a quadratic function of these values. As a result, we can
re-formulate the optimization problem to solve for both function
values and labels only at vertices in I.

Specifically, let gp = {gp,U ,gp,I}, where gp,I are values at ver-
tices on the intersection lines between p and other planes, and gp,U
are values at the remaining vertices on p. In this ordering, the ma-
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trix Mp has the form

Mp =

∣∣∣∣ A B
BT C

∣∣∣∣ (7)

where A is a square matrix of size |gp,U | × |gp,U |. Let Np =

C−B−1A−1B (i.e., the Schur complement of the block A of ma-
trix Mp), the minimal energy of (5) can be re-written using only
variables on I as

Minimize: ∑
p∈P

gT
p,I Np gp,I (8)

Note that, unlike the sparse matrix Mp, Np is dense. However, we
have observed in our experiments that the number of vertices on
the intersections (|I|) are usually 1 to 2 orders of magnitude fewer
than the toal number of vertices, and hence using the objective of
Equation 8 still yields a significant speed-up over the original form
in Equation 5.

To summarize, the reduced formulation solves for values ~gp(v)
and labels L(v) only for vertices v ∈ I, with the objective of (8) and
constraints of (6).

4. Optimization

The optimization problem can be understood intuitively as search-
ing for the minimum of a convex energy (Equation 8) over a set
of disjoint polytopes in the solution space. To see this, consider
a higher dimensional space G where each point g ∈ G represents
the vector of real variables over all planes, that is, g = ∪p∈P gp,I .
Each set of labels L(v) for all vertices v ∈ I yields a set of linear in-
equalities in (6), which in turn defines a convex polytope of feasible
region in G. The goal is to find a label set L such that the minimal
energy within the corresponding polytope in G is smallest among
all polytopes.

A standard trick to solve such problems is to cast it as a mixed-
integer program (MIP). To do so, we first replace the integer vari-
able L(v) by an array of binary variables mi(v), one for each label
i ∈ Rv, so that mi(v) = 1 only if i = L(v). Keeping the energy goal
as in (8), an equivalent mixed-integer linear program (MILP) can
be constructed by replacing the linear equalities in (6) with

(1−mi(v))C+gp
i (v)+ f p

i (v)≥ gp
j (v)+ f p

j (v)+ ε,

∀v ∈ I, p ∈ Pv, i, j ∈ Rp, i 6= j,
(9)

where C is a large constant, and by adding new constraints includ-
ing mi(v) ≥ 0 for all i and ∑i∈Rv

mi(v) = 1. Alternatively, we can
construct a mixed-integer non-linear program (MINLP) by replac-
ing (9) with

mi(v)(g
p
i (v)+ f p

i (v)−gp
j (v)− f p

j (v)− ε)≥ 0,

∀v ∈ I, p ∈ Pv, i, j ∈ Rp, i 6= j,
(10)

However, these MIP formulations have their own drawbacks.
The large constant C used in the MILP formulation may lead to
weak linear programming relaxation and numerical issues, whereas
the constraints in the MINLP formulation are non-convex. These
limitations result in low efficiency in the solution process. When
testing on our data sets, where the number of variables can be on

the order of hundreds, we found that state-of-the-art MIP solvers
(e.g., Gurobi) fail to return a solution even after running for hours.

We propose an efficient method for solving our optimization
problem without converting it to MIP. The key observation is that,
given a label set L, minimizing the energy within the polytope of
L is a quadratic programming (QP) problem, which can be solved
much more efficiently than MIP. Using the QP as a building block,
we follow a greedy strategy to search for the optimal label set. It
starts with a initial labeling obtained from the signed distance func-
tions along the intersection lines. It then incrementally changes the
labelling, one vertex at a time, to decrease the QP energy. These
two stages are detailed next.

4.1. Initial labels

A straight-forward scheme to initialize the label of a vertex v on an
intersection line is to average the signed distance vectors over all
planes containing v and take the label with the maximum value in
the averaged vector. Specifically, recall that Pv is the set of planes
containing v and Rv is the set of labels present on all these planes,
this scheme initializes label L(v) for all v ∈ I as:

L(v) = argmax
i∈Rv

∑
p∈Pv

f p
i (v)/|Pv|. (11)

This simple scheme, however, may produce “jumps” in the la-
bels along an intersection line. In particular, the labelling along an
intersection line l between two planes p1, p2 may suddenly change
at a vertex v where l meets another intersection line l′ between
planes p1, p3. The jump is caused by the fact that L(v) considers
the function values on all three planes p1, p2, p3 while the labels
at the remaining vertices of l consider function values on only two
planes p1, p2.

To create a smoother set of labels, we proceed in two steps. In
the first step, we use Equation 11 to determine labels at those ver-
tices that lie on multiple intersection lines. We call these vertices
junctions, denoted by J. In the second step, we modify the func-
tion along each intersection line to match the labels at the junc-
tions while maintaining the smoothness of the original function.
The modified functions are then used to obtain the labels of the
non-junction vertices using the simple averaging scheme above.

Specifically, for the second step, we represent the change of the
original function ~f p along an intersection line l on a plane p as an-
other vector function~hp,l . Note that there will be one function~hp,l

for each plane p that contains l. We wish to find~hp,l such that the
modified function ~f p +~hp,l along l is as similar to ~f p as possible
while matching the label at each junction vertex on l. To measure
similarity, we consider the same energy as Equation 2 but over a 1-
dimensional line, which penalizes the integral of the squared mag-
nitude and gradient of ~hp,l along the line. Using this energy, we
need to solve a quadratic program for each plane p and intersec-
tion line l. The variables are hp,l

i (v) for each vertex v ∈ l (including
junction vertices) and each label i ∈ Rp (labels present on p). The
objective and constraints are:

Minimize: hT
p,l Ml hp,l (12)
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Subject to: hp,l
L(v)(v)+ f p

L(v)(v)≥ hp,l
i (v)+ f p

i (v)+ ε,

∀v ∈ J∩ l, i ∈ Rp, i 6= L(v),
(13)

where hp,l is a flattened list of hp,l
i (v). Matrix Ml has a similar

structure as M in Equation 3. Specifically, the |Rp|×|Rp| submatrix
of Ml whose top-left position is {(a−1)|Rp|+1,(b−1)|Rp|+1}
is non-zero only if the a-th and b-th vertices share a common edge
on l. Let the edge between the a-th and b-th vertices be e, each
non-zero submatrix has the same form as Equation 4 except that
now Ta is the list of edges sharing the a-th vertex, Ta,b = {e}, σt is
the length of edge t, and ωa,b = 1/σe.

After solving for~hp,l for all planes p containing an intersection
line l, and denoting this set of planes by Pl , we obtain the label for
all non-junction vertices v on l by averaging functions over these
planes:

L(v) = argmax
i∈Rv

∑
p∈Pl

( f p
i (v)+hp,l

i (v))/|Pl |. (14)

4.2. Updating labels

As mentioned before, fixing the vertex labels L reduces our opti-
mization problem (8,6) to a quadratic program (QP). We consider
the minimal energy of this QP as a function of L, denoted by E(L).
Starting from an initial label set L0, we will create a sequence of
label sets L1,L2, . . . such that E(Lk+1)< E(Lk) for k ≥ 0.

Our approach is guided by the observation that E(Lk) is always
achieved by some point on the boundary of the polytope of Lk.
To see this, observe that the convex energy E has a unique local
minimum in the solution space G that corresponds to no change to
the initial implicit functions. Assuming the input is inconsistent, the
minimal-energy solution does not lie inside any feasible regions.
As a result, the minimizer in the polotype of Lk has to lie on one
or more facets of the polytope. Intuitively, the polytopes that are
“on the other side” of these facets are likely to have even lower
energy. We therefore enumerate these polytopes and pick one with
the lowest energy as our next label set Lk+1.

More specifically, each facet of the polytope of Lk corresponds
to an equality in the constraint set (6), or

gp
Lk(v)

(v)+ f p
Lk(v)

(v) = gp
i (v)+ f p

i (v)+ ε

for some vertex v, plane p, and label i. The polytope “on the other
side” of this facet corresponds to values of gp

Lk(v)
(v),gp

i (v) that
make the left-hand side smaller than the right-hand side. With ε

being a small constant, the inequality would change the label of v
from Lk(v) to i. This leads to the following simple algorithm. First,
we identify all vertex-label pairs {v∗, i∗} that satisfy the above
equality on some plane. For each such pair, we create a new label
set L∗ such that L∗(v) = L(v) for all v 6= v∗ and L∗(v∗) = i∗, and
then compute E(L∗) by solving QP (8,6). We then choose the next
label set Lk+1 to be the L∗ with minimal E(L∗), if such minimal en-
ergy is smaller than E(Lk). Otherwise, the process terminates and
outputs Lk as the solution.

The optimization process is illustrated in Figure 4 on the sim-
ple example from 1. Observe that the vertices whose labels change

Figure 4: Optimization process on the input in Figure 1 (left, plane
p2), showing the labeling on the plane (as red, blue, gray colors)
and interface set (green curves) in the input (a), after initializing
the labels on the intersection lines (b) (see Section 4.1), and after
the first (c) and final (d) iterations of label updates (see Section
4.2). Interface sets in previous steps are shown in white curves in
subsequent steps in (b,c,d) for comparison, and locations where
vertices change labels are indicated by arrows.

during the updates are located close to the interface set. In practice,
we have observed that the initial labels obtained by our method are
usually fairly close to the final labels (see next section). As a result,
iterative updates can converge quickly to a locally optimal solution.

5. Experimental results

We test our algorithm on simple synthetic inputs as well as a few
non-trivial examples describing anatomical structures. Our imple-
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Figure 5: Results of our method (on input in Figure 1 left, showing
plane p2) for different values of λ in Equation 2. The labeling is
shown as colored regions, and the input curve network is shown as
gray curves for reference.

mentation uses Gurobi for solving the quadratic program (8,6)
given a fixed label set L.

Choice of parameter We first evaluate the effect of the parame-
ter λ in our deformation energy (Equation 2). Figure 5 shows the
results of our method on the same input in Figure 1 (left) for dif-
ferent values of λ. Observe that λ controls the trade off between
two competing goals: maintaining the location of the input curves
and preserving their shape. If the value is too large (e.g., λ = 100),
most of the input curve network is kept in place but at the cost of
severe shape distortion around the intersection lines (highlighted
by the boxes) to satisfy consistency. If the value is too small (e.g.,
λ = 0.0005), our method will strive to maintain the overall shape of
the curves but may produce a significant amount of scaling. Nev-
ertheless, we found that there is a reasonably large range of values
of λ (e.g., between 0.001 and 0.1) for which our method produces
plausible results for our test examples. These parameters are re-
ported in Table 1.

Complex examples We test our method on several non-trivial bi-
ological data sets containing multiple planes (5 or more) that in-
tersect with each other in complex ways (Figures 6, 7, 8, 9, 10).
All of the examples exhibit a large number of inconsistencies. In
the case of multi-labelled data (Figures 8, 9, 10), observe that the
interaction between multiple labels would make it very difficult to
rectify manually while simultaneously preserving the shape of the
input contour. Our method is capable of restoring consistency on
all planes in each data. Note that in some cases the topology of
the curve network changes in the output (Figure 8, plane p2, cyan
region). The flexibility of allowing topological changes without ad-
ditional effort is another benefit of using an implicit representation.

The output of our algorithm can be utilized by any existing
method for surfacing non-parallel cross-sections. While the sur-
facing method of [BVG11] can be applied to an inconsistent in-
put, the surface often contains artifacts near inconsistency between
the cross-sections. An example is shown in the bottom-left of Fig-
ure 6 using the inconsistent input in the top-left (the artifacts are
highlighted). Applying the same surfacing method to the consistent

Figure 6: The result (top-right) of repairing an inconsistent two-
labelled Atrium data set (top-left, several inconsistencies are high-
lighted), and surfaces reconstructed from these two sets of slices
using [BVG11] (bottom; observe the artifacts in bottom-left).

cross-sections produced by our algorithm results in an artifact-free
surface (Figure 6 bottom-right).

To make the solution process more efficient for these complex
examples, we further simplify the problem size by reducing the set
of vertices I whose values and labels that we solve for in the opti-
mization formulation (8, 6). We observed that vertices that change
labels in the optimization process are either inconsistent to start
with (i.e., having different labels on different planes in the input)
or close to these inconsistent vertices on the intersection lines. We
therefore restrict the set I to inconsistent vertices plus a fraction
η of all vertices on the intersection lines ranked in descending or-
der by their distances to inconsistence vertices. We use η = 0.1 in
all three examples. Theoretically, it is possible for some vertices
that are on the intersection lines but excluded from I to become
inconsistent, since there are no label constraints imposed on these
vertices. In this case, one could re-run the optimization again by in-
cluding the newly inconsistent vertices in I, and repeat the process
until no more inconsistency is present. However, we have not had
any need to run optimization more than once on our data set.

Performance The core of our algorithm solves a non-linear con-
strained optimization problem which can also be formulated as a
mixed integer program (MIP). Such problems are notoriously chal-
lenging to solve even using carefully engineered general solvers.
For example, we tried to use Gurobi to solve the MILP formula-
tion as described in Section 4, and it failed to converge even af-
ter hours of running on all our complex examples (even after we
restrict the set I). Our proposed approach is made efficient by our
careful choice of initialization which places the starting guess close
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Figure 7: The result (right) of repairing a two-labelled ferret brain
data set that is highly inconsistent (left, one inconsistency is high-
lighted). The bottom pictures show the labeling on one of the planes
(p) as well as labelling from other planes on intersection lines.

to the final solution (Section 4.1), and leveraging the efficiency of
solving smaller quadratic programs (QP) (Section 4.2).

To better understand the performance of our method, we divide
our processing time into three stages: a preprocessing stage that
discretizes the planes and prepares data structures for optimization,
initialization of labels, and iterative updates of labels. The prepro-
cessing stage is dominated by the matrix inverse operation for ob-
taining the coefficient matrix Np in the reduced energy objective
(Equation 8). The inversion is done per plane p and the complexity
depends on both the total number of vertices on p and the number
of labels on that plane. The complexity of both the second and third
stages depends on the size of the QP, which scales with the num-
ber of vertices and labels in the intersection set I, and the number
of times QP is solved. For label initialization, QP is solved only
twice per intersection line, one for each plane containing the line,
and hence is usually very efficient. For label updates, QP needs to
be solved for possibly many times depending on the number of it-
erations required to terminate and the number of vertices that need
to be checked in each iteration.

We report the performance of the stages of our algorithm in Table
1. Our algorithm was implemented in C++ and runs on a laptop
with 2.5 GHz Intel Core i7 and 16GB RAM. Overall, our method
finishes within minutes for all examples. The dominating stage is
updating labels, followed by the preprocessing stage.

Optimality To evaluate the optimality of our solution, we compare
our results to those obtained by Gurobi using the MILP formula-
tion. Since Gurobi fails to run on any of our complex examples,
we design the following experiment. We take a subset of k planes

Figure 8: The result (right) of repairing a 4-labelled liver data set
(left, two inconsistencies are highlighted), showing the labeling on
two planes (p1,p2) at the bottom.

# Planes # Total |I| λ Pre-proc Initial Update
(Labels) vertices time time time

Atrium 5 (2) 5740 109 0.01 0.6398 0.0258 0.448619
Ferret Brain 10 (2) 13131 300 0.01 3.1514 0.703 62.945
Liver (Fig 8) 5 (4) 8222 95 0.1 10.943 0.5324 13.4681
Liver (Fig 9) 6 (4) 20799 125 0.005 60.7131 0.628 29.1373
Mouse Brain 6 (7) 14159 168 0.025 127.661 2.394 291.436

Table 1: Data size and running time for the examples in Figures
6, 7, 8, 9, 10, showing the number of planes, number of labels, total
number of vertices in the triangulations, number of vertices in the
reduced intersection set I, λ value, and timing (in seconds) for each
of the three stages of our method.

from the ferret brain data (Figure 7), for k = 2, . . . ,5, and run both
Gurobi (solving MILP) and our method (Sections 4.1,4.2) for each
k. We stopped at k = 5, beyond which Gurobi could not return an
answer after running for two hours. We report the energy of the
solution found by both methods in Table 2, as well as the running
time of each method. Observe that our method is able to achieve the
same energy as the general MIP solver for all experiments, yet in
significantly less time. Also note that our label initialization stage
achieves close-to-optimal energy levels, which is an important fac-
tor for the fast convergence of our method.

6. Conclusion and discussion

In this paper, we consider the problem of solving label inconsis-
tencies given contour networks on multi-labeled domains consist-
ing of planar slices. We formulated the solution as a constrained
optimization problem using an implicit representation where we
carefully construct the energy function to preserve the shape of the
contour while eliminating inconsistencies. We presented a targeted
solver which exceeds the performance of tuned general solvers for
this same problem. Our algorithm solves a critical step in the re-

submitted to EUROGRAPHICS 2018.



10 Z.Y Huang & M. Holloway & N. Carr & T. Ju / Repairing Inconsistent Curve Networks

Figure 9: The result (right) of repairing another 4-labelled liver
data set (left, two inconsistencies are highlighted), showing la-
belling on two planes (p1,p2) at the bottom.

k
Initialization Final Gurobi Our Gurobi

energy energy energy time time
2 16.97 16.65 16.65 0.274 1.05
3 26.49 24.95 24.95 0.354 11.28
4 26.46 25.02 25.03 0.531 33.16
5 36.14 29.55 29.55 1.471 619.91

Table 2: Comparing our optimization method and the MIP solver
in Gurobi on a subset of k planes in the ferret brain data, in terms
of minimal energy and time (in seconds).

construction pipeline from cross-sections, and it is our hope that
this method will pave the way for existing surfacing algorithms to
reach a wide spread use in the scientific, medical, and design com-
munities.

Limitations and future work Our work can be improved and ex-
tended in several ways. First, the deformation energy used in our
optimization formulation captures the distortion to the input curve
network in terms of its location and tangents. However, it does not
explicitly preserve the smoothness of, or any sharp features on,
the input curves. Augmenting the energy with higher-order terms
has the potential to more faithfully retain the curve shape. Second,
while label consistency is sufficient for reconstructing a continuous
surface, reconstructing a smooth surface places stronger require-
ment on the input curve network, such as the differential properties
where curves on different planes intersect. The precise consistency
condition for smooth reconstruction, and how to enforce them, in-
vite further investigation. Lastly, we would like to explore strategies

to further speed up the optimization process, so that it may be used
within an interactive volume segmentation program to give imme-
diate feedback to the user as she delineates the boundary curves.
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