
Extrinsically Smooth Direction Fields

Zhiyang Huang Tao Ju

Washington University in St. Louis

Abstract

We consider the problem of finding a unit vector field (i.e., a direction field) over a domain that balances two competing
objectives, smoothness and conformity to the shape of the domain. Common examples of this problem are finding
normal directions along a curve and tangent directions over a surface. In a recent work, Jakob et al. observed that
minimizing extrinsic variation of a tangent direction field on a surface achieves both objectives without the need for
parameter-tuning or the use of additional constraints. Inspired by their empirical observations, we analyze the relation
between extrinsic smoothness, intrinsic smoothness, and shape conformity in a continuous and general setting. Our
analysis not only explains their observations but also suggest that an extrinsically smooth normal field along a curve
can strike a similar balance between smoothness and shape-awareness. Our second contribution is offering extension of,
justification for and improvement over the optimization framework of Jakob et al. In our experiments, we demonstrate
the suitability of extrinsically smooth field in a variety of applications and compared with existing solutions.
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1. Introduction

Unit vector fields (which we call direction fields in this
work) in R3 have various applications in computer graph-
ics. For example, a sequence of normal directions along a
1-dimensional spatial curve is useful for sweep-based mod-
eling [1, 2] and visualization of tubular structures [3]. A
tangent direction field over a 2-dimensional surface is use-
ful for texture synthesis [4, 5, 6] and non-photorealistic
rendering [7]. In these and many other problem settings,
the direction field is restricted to some plane at each loca-
tion of the domain. In the two examples above, the plane
is either normal to the curve or tangent to the surface.

We consider the general problem of finding a direc-
tion field g over some manifold M ⊂ R3 such that g is
orthogonal to a given direction field f over M (i.e., g is
restricted to the plane orthogonal to f). Since this is an
under-constrained problem, regularization is needed to en-
sure that g is “good”. While the criteria of “goodness”
vary with applications, a typical criteria is being smooth
or having low variation. For some applications, an addi-
tional requirement is that g should conform to the shape
of the domain M . For example, a tangent direction field
that aligns to surface features is desirable for depicting the
surface with strokes [7] or textures [8].

Most existing methods formulate these two criteria in-
dependently. In particular, the variation of g is usually
measured intrinsically, as the amount of twisting of g
around the input field f . However, intrinsic variation does
not capture the variation of f itself, and the latter is in-
timately related to the shape of M in the case when f is

derived from M (e.g., being its tangents or normals). To
align g with the shape features of M , these methods need
to couple intrinsic energy with additional shape-related
constraints, such as user sketches, feature lines, and the
curvature field (see brief review in the next section). How-
ever, parameter-tuning is required to achieve the desir-
able balance between these two terms, smoothness and
constraints. Moreover, obtaining the shape-related con-
straints often requires user interaction or computation of
high-order differential quantities, such as curvatures.

In a recent work, Jakob et al. [9] proposed an elegant
solution to the problem of designing a tangent direction
field (and more generally, a symmetric n-vector field) over
a surface. In their discrete implementation, they found
that the two criteria, smoothness and shape conformity,
can be achieved simultaneously by minimizing the extrin-
sic variation of g in the embedded space R3. The resulting
field naturally follows prominent feature lines of the sur-
face and varies smoothly away from these features. There
is no need for parameter-tuning, user interaction, or com-
puting high-order quantities.

The authors of [9] did not offer any theoretical explana-
tion to their observed behaviors. In particular, it was not
clear why minimizing extrinsic variation leads to alignment
with shape features, or how it balances between smooth-
ness and alignment. Answers to these questions would
shed light into the role of extrinsic variation in other di-
rection field problems (e.g., normal directions on curves).

To provide answers to these questions, we analyze the
extrinsic variation in the continuous and general setting –
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not just for tangent fields on surfaces, but for any direction
field g orthogonal to some input field f (i.e., the general
problem we mentioned earlier). Our key findings are:

1. The extrinsic variation of g can be decomposed into a
twisting term, which is the commonly studied intrin-
sic variation, and a bending term, which measures
how close g is to the direction of greatest variance of
f .

2. The bending term is scaled by the amount of aniso-
tropy in the variation of f : the greater difference
exists in the variation of f in different directions,
the greater the role that bending is playing in the
extrinsic variation of f .

The analysis allows us to conclude that an extrinsically
smooth tangent field over a surface would tend to align
with the principal curvature direction with a smaller abso-
lute curvature value, if the local principal curvatures have
very different magnitudes, and maximize intrinsic smooth-
ness otherwise. This explains the observations made in [9].
The analysis also shows that an extrinsically smooth nor-
mal field along a curve strikes a similar balance between
aligning to the binormals and being intrinsically smooth.

Minimizing the extrinsic variation is a non-linear opti-
mization problem. As our second contribution, we extend,
justify, and improve the discrete optimization framework
of Jakob et al. [9]. First, we extend their discretization of
extrinsic variation to simplices at other dimensions, such
as edges (1D) and tetrahedra (3D), so that we can handle
more general direction field problems. Second, we justify a
key step in their iterative Gauss-Seidel step for optimizing
the field. Third, and perhaps more importantly, we offer a
simpler and parameter-free alternative to their hierarchi-
cal approach for initializing the field. Our approach only
needs to solve a single eigenvalue problem on the original
surface.

Our experimental results show the superiority of ex-
trinsically smooth direction fields over results of existing,
intrinsic methods on both curves and surfaces. To demon-
strate the generality of our analysis and algorithms, we
explored two other direction field problems. In the first,
we generate a direction field orthogonal to a non-tangent
field along a spatial curve, with the application of camera
orientation. In the second, we compute a direction field
within a tetrahedral volume to create a ribbon visualiza-
tion of an input vector field.

Contributions. We make the following theoretical and
practical contributions:

1. We analyze the extrinsic variation in general direc-
tion fields and give a geometric form of the bend-
ing term. The analysis allows us to explain obser-
vations made in a recent work [9] for extrinsically
smooth tangent fields on surfaces and suggest a sim-
ilar property of extrinsically smooth normal fields
along a curve (Section 3).

2. We extend, justify, and improve the discrete opti-
mization framework of Jakob et al. [9] for comput-
ing extrinsically smooth direction fields in general
(Section 4).

3. We experimentally demonstrate the suitability of ex-
trinsic smoothness in a variety of direction field prob-
lems (Section 5).

2. Related work

Most of the previous work on direction fields are con-
cerned with either normal vectors along a curve or tangent
vectors over a surface. We briefly review literature on these
two topics, with an eye towards the balancing of the two
goals (smoothness and shape conformity).

Normal fields on a curve. Natural choices of normals over
a smooth curve include the principal normal (derivative of
unit tangent) and the binormal (cross-product of tangent
and unit principal normal). Together with the tangent,
they constitute the Frenet frame. While reflecting local
curve shape, the Frenet frame is undefined at C1 connec-
tions or where the curvature is zero, and it can twist sig-
nificantly near low-curvature points.

As a remedy, a normal field with zero rotation (i.e., in-
trinsic variation) over an open curve can be defined by the
parallel-transport of any initial normal vector from one
end of the curve [10]. In fact, parallel-transport creates
a frame field, which gives rise to a one-parameter family
of normal fields that all have zero twist. To handle closed
curves and additional constraints (e.g., fixed frames at cer-
tain points), one may define a frame field that minimizes
the total rotation measured in angular space [11] or quater-
nion space [12]. Various numerical techniques have been
proposed for rotation-minimizing frames (see the in-depth
review in [11]), and these frames have been widely used
in applications such as axial deformation [13, 14], sweep-
based modeling [1, 2], visualization of tubular structures
[3], and physical simulation of rods [15]. However, framing
methods in general do not suggest a unique normal field.
More importantly, without additional constraints, normal
fields derived from rotation-minimizing frames do not cap-
ture the shape of the curve (see comparisons in Section 5).

Tangent fields on a surface. The principal curvature fields
are natural choices of tangent fields over a smooth surface.
However, the principal curvature direction is undefined at
umbilic points, and can be highly unstable in near-umbilic
regions. In addition, a principal curvature direction does
not differentiate between its forward and backward orien-
tations.

To achieve shape alignment while maintain smoothness
of the field, the majority of existing field creation methods
solve a constrained optimization problem. Many meth-
ods [16, 7, 4, 6, 17, 8, 18, 19, 20, 21, 22] utilize sparse
directional constraints, which are either computed auto-
matically from local curvature (e.g, feature lines [8, 20]
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and feature regions [7, 6]) or provided interactively by
users. Other methods [23, 24] utilize the curvature field
as a guidance field and vary the guidance strength based
on the curvature values. The recent work [25] follows a
similar principle to produce line directions (called regular-
ized curvature lines) whose alignment with the curvature
field is moderated by the so-called curvature anisotropy,
or the difference between the two principal curvature val-
ues. Some of these above-mentioned methods also require
topological constraints (e.g., location and index of singu-
larities) to be explicitly specified [18, 21, 22]. Note that
many of these methods can handle the more general, sym-
metric n-vector fields. With a few exceptions [4, 8, 16, 23],
majority of these methods use intrinsic variation to mea-
sure smoothness of the field. However, parameter-tuning
is generally needed for this class of methods, either for bal-
ancing between smoothness and alignment to constraints
in the energy formulation or for creating the constraints.

To the best of our knowledge, tangent direction fields
that minimize extrinsic variation were first considered by
Gonzalez-Davila and Vanhecke [26]. In the special case
of surfaces of revolution, they studied the uniqueness of
such fields given constraints on the boundary of the sur-
face. However, the relation between extrinsically smooth
fields and the shape of the underlying surface was not men-
tioned. Without realizing this relation, some researchers
even couple extrinsic variation with explicit curvature di-
rection constraints to create shape-aligned fields [23]. The
relation is observed only recently, by Jakob et al. [9], for
creating n-vector fields on a triangular mesh. They mea-
sured extrinsic variation as a weighted sum of vector differ-
ences over all edges of the mesh, and they proposed a sim-
ple yet effective iterative optimization method. Inspired by
their empirical observation, this paper seeks to explore the
theoretical relation between extrinsic variation and shape,
and do so in a more general context. We also enrich and
improve their computational framework for other direction
field problems.

3. Theoretical analysis

The goal of section is to understand how minimizing
extrinsic variation leads to direction fields that balance
between intrinsic smoothness and conformity to shape. We
consider a smooth submanifold M of R3 that can be a
curve (1-dimensional), surface (2-dimensional) or volume
(3-dimensional), and a differentiable unit vector field f
over M . While our analysis applies to arbitrary choices of
f , we note that in many applications f is derived from M
(e.g., being tangent or normal to M). In the latter case,
the variation of f naturally captures the shape of M .

We define an extrinsically smooth direction field g for
the pair {M,f} as a vector field over M that minimizes
the Dirichlet energy, ∫

M

|∇g|2 (1)

subject to constraints fT g = 0, gT g = 1. Here, ∇g de-
notes the derivative of the vector field g, and | |2 is the
squared Frobenius norm. To study the energy over do-
mains of different dimensionality in a consistent manner,
∇g is written as a 3 × 3 matrix whose rows are gradients
of the X, Y, and Z coordinates of g over the tangent space
TM . More precisely, let {v1, . . . , vk} be any set of mutually
orthogonal unit tangent vectors in TM , where k equals the
dimension of TM (and M). Then ∇g =

∑k
i=1 gviv

T
i where

gvi is the derivative of g in the direction of vi. The dot
product of ∇g and any tangent direction v ∈ TM gives the
derivative of g in the direction of v, or gv.

The two constraints, orthogonality to f and unity, are
critical in our formulation to prevent trivial minimizers of
Equation 1. If we drop orthogonality, any constant unit
vector field g would have zero energy. In we drop unity,
the zero vector field g would have zero energy. These two
constraints avoid the need for boundary conditions that
are usually required for Dirichlet-type problems.

In the following, we first investigate the integrand
|∇g|2, which measures the amount of local extrinsic vari-
ation (Section 3.1). We shall arrive at a decomposition of
|∇g|2 into a twisting term, which measures intrinsic varia-
tion, and a bending term, which is related to the variation
of f itself. Since intrinsic variation has been extensively
studied in the past, we focus on the bending term and give
a simple and geometric expression of bending. Next, we
will apply our expression to understand our two motivat-
ing problem settings, normal directions along a curve and
tangent directions on a surface (Section 3.2).

3.1. Local extrinsic variation

The derivative of g along any tangent direction v ∈ TM
(here TM refers to the tangent space of M), or gv, can be
decomposed into two orthogonal vectors: one orthogonal
to f , as (I−ffT )gv (I is the identify matrix), and another
parallel to f , as ffT gv (see Figure 1 (a)). As a result, we
can decompose |∇g|2 as the sum of two terms:

|∇g|2 = |(I − ffT )∇g|2 + |fT∇g|2 (2)

The first term, the variation of g within the plane orthog-
onal to f , describes how much g rotates around f . We
call it the twisting term. Since the twist is oblivious of

Figure 1: Illustrating the decomposition of the derivative gv (a) and
the eigenvectors of matrix J (b).
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the change in f itself, it captures the intrinsic variation of
g with respect to f . The second term, the variation of g
parallel to f , describes how much g bends towards or away
from f . We call it the bending term. This decomposition
has been known, for example, when M is a surface and f
is its normal field [27].

We are primarily interested in how |∇g|2 relates to the
variation of f , as the latter is often tied to the shape of
M . As a result, we focus on understanding the bending
term, |fT∇g|2. Since fT g = 0, by differentiation we have
fT∇g = −gT∇f . This observation allows us to re-write
bending as a quadratic form,

|fT∇g|2 = |gT∇f |2 = gTJg, (3)

where J = ∇f(∇f)T is a positive semi-definite matrix. In
other words, the bending is the inner product of g with
itself in the new metric J that encodes the variation of f .

To make the relation between bending and the varia-
tion of f more precise, consider the eigenvalues λ1 ≥ λ2 ≥
λ3 ≥ 0 of J and the corresponding eigenvectors e1, e2, e3

that form an orthogonormal basis. Since fT f = 1, by
differentiation we have fT∇f = 0, which gives Jf = 0.
Hence f is an eigenvector of J with eigenvalue 0. Let
e3 = f and λ3 = 0. Since g, e1, e2 all lie in the plane or-
thogonal to f , we can express g in the bases of e1, e2 as
(gT e1)e1 + (gT e2)e2, which leads to

gTJg = λ1(gT e1)2 + λ2(gT e2)2 (4)

= λ2 + (λ1 − λ2) cos2 θ (5)

where θ is the angle between g and e1 (see Figure 1 (b)).
It is now clear that the bending term is proportional to

the angular agreement between g and ±e1, or equivalently
the angular deviation from g to ±e2. The closer g is to
±e1, the greater the bending. The angle measure is scaled
by the multiplier (λ1 − λ2). What remains unclear is the
geometric meaning of e1 and λ1−λ2, which we reveal next.

The following lemma shows that e1 is in fact the direc-
tion of the greatest variation of f :

Lemma 3.1. The derivative of f along any unit tangent
vector v ∈ TM , denoted as fv, achieves maximal magnitude
when fv is a scalar multiple of e1.

Proof. Consider unit tangent vector v∗ such that fv∗

achieves the maximal magnitude. Since fv = (∇f)v, we
have

v∗ = arg max
v∈TM ,|v|=1

((∇f)v)T (∇f)v. (6)

Note that we can drop the tangent requirement without
changing the choice of v∗: since (∇f)v = 0 for any vector
v orthogonal to the tangent space TM , the magnitude of
(∇f)v will not change after replacing v by its component
in TM . Hence we have

v∗ = arg max
|v|=1

((∇f)v)T (∇f)v. (7)

By Rayleigh quotient theorem, v∗ is the eigenvector of
K = (∇f)T∇f with the largest eigenvalue. On the other
hand, there is a one-to-one correspondence between eigen-
vectors of J and K: for any eigenvector u of K with
eigenvalue δ, (∇f)u is an eigenvector of J with the eigen-
value δ. Conversely, for any eigenvector e of J with eigen-
value λ, (∇f)T e is an eigenvector of K with the eigenvalue
λ. Therefore we conclude that e1 is a scalar multiple of
(∇f)v∗ = fv∗ .

The proof of the lemma also shows that λ1, the largest
eigenvalue of J , is the magnitude of the greatest variation
of f . That is, λ1 = max |fv| for all unit tangent vectors
v ∈ TM , and the maximum is achieved when fv is a scalar
multiple of e1. The second eigenvalue, λ2, is the magnitude
of fv in the orthogonal direction e2. Hence the difference
(λ1 − λ2) captures the non-uniformity, or anisotropy, in
the variation of f on its orthogonal plane.

To summarize, the local extrinsic variation of g is the
sum of a twisting term, which measures the intrinsic vari-
ation of g with respect to f , and a bending term, which is
related to the variation of f . In particular, bending is pro-
portional to the agreement between g and the direction of
the greatest variation of f and is scaled by the anisotropy
of variation of f .

3.2. Case studies

From the above analysis of local extrinsic variation, we
see that minimizing total extrinsic variation (i.e., Equation
1) has two effects: it maximizes local intrinsic smoothness
on one hand and, on the other hand, encourages alignment
to the direction orthogonal to the greatest variation of f
(i.e., e2). The balance between these two effects depends
locally on the anisotropy of variation of f (i.e., λ1 − λ2).
In regions where f varies nearly uniformly in all directions
orthogonal to f , the twisting term dominates, and the ex-
trinsically smooth field g will be intrinsically smooth. In
regions where f varies mostly in one direction (i.e., e1),
the bending term dominates, and g will align with e2.

In problem settings where f is derived from the domain
M , the variation of f , and hence the extrinsically smooth
field g, is intimately related to the shape of M . We make
such relation precise in the following two specific problem
settings.

Normal directions on a curve. Let M be an oriented 1-
dimensional curve (open or closed) and f identify with the
unit tangent vector field t along M . By the Frenet−Serret
formulas, ∇f has the form

∇f = κ n tT , (8)

where κ is the curvature and n is the unit principal normal.
The first two eigenvectors of matrix J are e1 = n, e2 = b
with eigenvalues λ1 = κ2, λ2 = 0, where b = t × n is the
unit binormal (see Figure 2 (a)). Applying these settings
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Figure 2: Illustrating the eigenvectors e1, e2, e3 of J when f is the
tangent direction of a curve (a) or the normal direction on a surface
(b).

to Equation 5, the bending term in extrinsic variation be-
comes

gTJg = κ2 cos2 θ, (9)

where θ is the angle between g and the principal normal
n.

It becomes clear that the curvature, κ, plays the bal-
ancing role between the smoothness and shape-alignment
in an extrinsically smooth normal field. Specifically, min-
imizing extrinsic variation will either encourage g to align
with the binormal b, in parts of the curve where the curva-
ture κ is large, or to minimize rotation in the normal plane
of the curve, in parts where κ is small. In the extreme case
where κ = 0 (i.e., the curve is straight), the bending term
vanishes, and any intrinsically smooth direction field (in
this case, constant normal directions) is also extrinsically
smooth.

Extrinsic smoothness over a curve also has a physical
explanation. Suppose the curve M is the centerline of
an elastic, inextensible rod with an anisotropy bending
response on its cross-sections such that the response is zero
in the direction f × g (i.e., bending the rod in direction
orthogonal to g incurs no energy). The Dirichlet energy
in Equation 1 is precisely the elastic energy of the rod
[15] (assuming that both bending and twisting modulus of
the material are 1). This observation justifies the use of
the extrinsic smooth direction field in applications such as
creating least-bending ribbons from a curve (see Section
5).

Tangent directions on a surface. Now let M be a smooth
2-dimensional surface (open or closed) and f be the unit
normal vector field n over M . By basic differential geom-
etry, ∇f is a symmetric matrix

∇f = (t1, t2) ·
(
κ1 0
0 κ2

)
· (t1, t2)T , (10)

where κ1, κ2 are the two principal curvature values (we ask
that |κ1| ≥ |κ2|), and t1, t2 ∈ TM are the corresponding

principal curvature directions. The first two eigenvectors
of matrix J are e1 = t1, e2 = t2 with eigenvalues λ1 =
κ2

1, λ2 = κ2
2 (see Figure 2 (b)). The bending term of the

extrinsic variation has the form

gTJg = κ2
2 + (κ2

1 − κ2
2) cos2 θ, (11)

where θ is the angle between g and t1.
The difference, (κ2

1 − κ2
2), is the key that balances in-

trinsic smoothness with alignment to the surface shape. A
larger difference means that the surface has a dominant
bending direction (t1), and minimizing the extrinsic vari-
ation encourages g to align with the orthogonal direction
(t2). On the other hand, a small difference implies that the
surface locally lacks a single dominant direction. That is,
the surface is nearly umbilic, nearly flat, or having a near-
zero mean curvature. In these locations, minimizing the
extrinsic variation encourages g to be intrinsically smooth.

We make a special note of the direction t2, which is
the principal curvature direction with a smaller absolute
curvature value. This is different from standard definition
of the minimum curvature direction, which is associated
with the smaller signed curvature value. This difference
is important when it comes to describing features of M :
while t2 is identical with the minimum curvature direction
along ridges of M , where they generally follow the ridge
line, the two directions are orthogonal along valleys of M ,
where only t2 follows the valley line (see Figure 3 (b)).
The minimum curvature direction along a valley is usually
transverse to the valley line because the curvature has a
smaller, negative value in that direction. Since an extrinsi-
cally smooth field aligns with t2, it follows strong (in terms
of the difference κ2

1 − κ2
2) ridge and valley features of the

surface. This explains the observation made in [9].

Figure 3: Comparing minimum curvature direction (a) and the prin-
cipal curvature direction with a smaller absolute curvature value (t2)
(b). Note that while the latter is aligned with both ridges and valleys,
the former is transverse to the valleys.

We make a final remark on singularities. As pointed
out in [24], the twisting term of Equation 2, also known
as the intrinsic energy, approaches infinity in the vicinity
of a singularity of g on a surface (i.e., where g is not con-
tinuous). Since the Dirichlet energy is composed of the
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twisting term and the bending term, it also blows up near
singularities. Unfortunately, on many non-trivial surfaces,
any tangent vector field has to contain singularities due to
the Poincare-Hopf theorem. For these surfaces, the mini-
mizer of the (infinite) Dirichlet energy becomes undefined.
Nonetheless, we can define a discrete approximation of the
Dirichlet energy over a simplicial domain that is finite by
construction (see Section 4). Since the discrete energy
is high around a singularity, albeit finite, minimizing the
discrete energy tends to create a field with low counts of
singularities. This observation was made in [9] as well as
in our own experiments (see Section 5).

4. Discrete optimization

We consider the problem of computing extrinsically
smooth direction fields in a discrete setting. We assume
the input domain M is represented as a simplicial complex
(e.g., a polyline, a triangular mesh, or a tetrahedral vol-
ume) and the direction field f is sampled at each vertex of
M . Our output is a set of directions, one at each vertex,
that encode the extrinsically smooth field g.

Our method is built on top of the discrete optimization
method of Jakob et al. [9], which is simple but effective
for the problem of finding tangent vectors on a surface.
We enrich their method in three aspects. First, we pro-
vide justifications for their discrete energy formulation and
extend it to domains in dimensions other than 2 (Section
4.1). Second, we provide justification for a key step in
their iterative optimization (Section 4.2). Third, and more
importantly, we offer an alternative approach to initialize
the optimization that is simpler than theirs and requires
no parameters (Section 4.3).

4.1. Discrete energy

To measure extrinsic variation of tangent directions
over a surface, Jakob et al. [9] uses a particularly simple
approximation as the weighted sum of squared differences
over all edges of the surface. However, no rigorous jus-
tification is provided for their formulation or the choice
of weights. Here we show that their edge-based formu-
lation, with the proper choice of weights, is in fact the
exact continuous Dirichlet energy (Equation 1) under the
assumption of a coordinate-wise piecewise linear (PL) in-
terpolation of g. This analysis also allows us to extend
their formulation to other domains, such as curves and
volumes.

The discretization of Dirichlet energy over M depends
on the choice of interpolation model. The typical PL
model linearly interpolates the values at vertices over each
simplex. To apply this model to a vector field g while
keeping it unit-length and orthogonal to f everywhere on
M , one would need to first linearly interpolate f over each
simple σ and then interpolate g while ensuring its unity
and orthogonality to the interpolated f at each location
in σ. However, it is difficult to obtain a closed-form in-
tegral of the Dirichlet energy of g in this way (although

this is possible for intrinsic energy [24, 28]). Instead, we
shall drop the two constraints, unity and orthogonality,
when interpolating g. That is, we perform coordinate-wise
linear interpolation of g over each simplex. Such interpo-
lation yields a constant |∇g|2 for any point in a simplex,
which makes integration trivial.

Given directions gi at each vertex i, the Dirichlet en-
ergy defined by the coordinate-wise PL interpolation over
M has been well-studied [29] and can be written as a sum
over all pairs of edge-adjacent vertices i, j,∫

M

|∇g|2 = C1

∑
{i,j}∈M

ωij(gi − gj)2. (12)

Here, C1 is a global constant and ωij are the well-known
discrete harmonic weights. Equation 12 holds for M at
any dimension (1,2,3). The form of ωij at each dimension
can be easily derived or found in the literature as:

• M is a curve: ωij = 1/lij where li,j is the length of
the edge {i, j}.

• M is a surface: ωij = cotα + cotβ where α, β are
the angles opposite to edge {i, j} in the two triangles
sharing this edge [29]. This is one of the weights
suggested in [9].

• M is a volume: ωij =
∑
σ lσ cotασ where the

summation is over all tetrahedra σ sharing the edge
{i, j}, lσ is the length of the edge in σ opposite to
{i, j}, and ασ is the dihedral angle in σ along that
opposite edge [30].

4.2. Optimization

Minimizing the right-hand side of Equation 12, under
the constraints that each gi is a unit vector orthogonal to
an input vector fi, is a non-linear optimization problem. A
standard solution strategy is to use iterative local updates.
Jakob et al. [9] uses Gauss-Seidel iterations, which we
found effective in our experiments as well. Starting with
an initial assignment of gi at all vertices (to be discussed
in next subsection), in each iteration, this method visits
the vertices in a pre-defined order and updates the gi at
vertex i using vectors at all vertices sharing an edge with i
(i.e., the 1-ring neighbors of i, denoted as Ni). The update
involves first taking the weighted average of those vectors,
then projecting onto the plane orthogonal to fi, and finally
normalizing to have unit length:

g∗i ←
∑
j∈Ni

ωijgj
g′i ← (I − fifTi )g∗i
gi ← g′i/|g′i|

(13)

Although this update step is simple and intuitive, one
may ask if it is optimal in the sense that updated vector gi
minimizes the discrete energy (Equation 12) locally (i.e.,
assuming gj at all other vertices j 6= i are fixed). We give
an affirmative answer by the following lemma:

6



Figure 4: Comparing random assignment with our eigenvector approach for initializing the normal direction field on a curve (left) and the
tangent direction field on a chair surface (right). We show both the initial fields (top row) and after iterative optimization (bottom row). The
curves are visualized as ribbons whose cross-sections are elongated in the direction orthogonal to the normals, and the normals are drawn
as blue arrows. On a surface, the tangent directions are drawn as blue lines and the red dots are singularities. The Dirichlet energy (E) for
each field is shown, and so is the number of singularities (S) on the surface. Note that the initialization using our eigenvector approach yields
better optimization results.

Lemma 4.1. The vector gi obtained by Equation 13 is the
solution to the following constrained minimization prob-
lem:

arg min
v
D(v), s.t. vT v = 1, vT fi = 0 (14)

where
D(v) =

∑
j∈Ni

ωij(v − gj)2

Proof. If we drop the constraint that v needs to be a unit
vector, D(v) is a quadratic function over the plane or-
thogonal to f whose minimum is achieved precisely at g′i
in Equation 13. In addition, the gradient of D(v) over the
plane orthogonal to f is v − g′i. Bringing back the unity
constraint, the solution to Equation 14 is the unit vector
v where the gradient, v − g′i, is parallel to v. There are
two such unit vectors, g′i/|g′i| and −g′i/|g′i|, but the former
is closer to g′i and hence is the true minimizer.

A direct implication of Lemma 4.1 is that the iterative
optimization of [9] always converges to a local minimum,
since the energy decreases monotonically at each iteration.
The optimization can thus be considered as a block coor-
dinate descent of the discrete Dirichlet energy.

4.3. Initialization

The iterative optimization is sensitive to the initial as-
signment of gi. For example, a random assignment easily

leads to sub-optimal results that have high energy and con-
tain numerous singularities (see Figure 4). To address this
limitation, Jakob et al. [9] employs the standard hierar-
chical optimization method [4, 5], which involves creating
a sequence of meshes with decreasing levels of complex-
ity, optimizing the field at coarser levels and propagat-
ing the result to the next finer level as the initial assign-
ment. While delivering impressive results, the hierarchical
method requires additional parameters (e.g., the number
of meshes, amount of simplification between meshes at dif-
ferent levels, etc.), and adds complication to the optimiza-
tion framework (e.g., need to generate multiple meshes
and maintain their relations). Moreover, the hierarchical
method was only designed for surface meshes.

We propose a simple and parameter-free initialization
method that leads to pleasing optimization results in prac-
tice. We minimize a modified energy that replaces the
unity constraint on g in our original problem with the unity
constraint on the integral of the squared length of g over
M . This change allows us to find the global optimal solu-
tion by solving a single eigenvector problem. The resulting
g is normalized before serving as the initial assignment for
iterative optimization. This strategy was originally pro-
posed in [24] for computing intrinsically smooth fields and
later adapted to compute smooth complex functions [31],
both over surface meshes. Here we further adapt the strat-
egy to initialize extrinsically smooth fields over 1-, 2-, or
3-dimensional domains.
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Specifically, our initialization step solves the following
continuous problem:

arg min
g

∫
M

|∇g|2, s.t. fT g = 0,

∫
M

gT g = 1 (15)

Note that g is no longer a “direction” field as it has varying
magnitude. In our discrete setting, dropping the unity con-
straint allows us to express each gi at a vertex in a linear
form, aiαi+biβi, where αi, βi is a fixed pair of orthonormal
basis in the plane orthogonal to fi, and ai, bi become the
unknown scalars to be solved. Denote a = {a1, . . . , am}T
and b = {b1, . . . , bm}T where m is the number of vertices
of M .

Using coordinate-wise PL interpolation, the field g can
be expressed using a set of linear bases Φi (resp. Ψi), each
being a hat-function that evaluates to be αi (resp. βi)
at vertex i and attenuates (in magnitude) linearly in each
adjacent triangle of vertex i. Denote Φ = {Φ1, . . . ,Φm}
and Ψ = {Ψ1, . . . ,Ψm}. We can write the interpolated g
as

g = (Φ Ψ)

(
a
b

)
(16)

Using this representation, we can write the Dirichlet en-
ergy in a quadratic form:∫

M

|∇g|2 = C2 (aT bT )

(
Aα,α Aα,β
Aβ,α Aβ,β

)(
a
b

)
(17)

where C2 is a constant and each A�,∆ is an n× n matrix
(�,∆ denotes either α or β). The (i, j)-th entry of A�,∆ is
non-zero only if i = j or j ∈ Ni (i.e., {i, j} is an edge ofM).
In the former case, the entry is �Ti ∆i

∑
j∈Ni

ωij , where
ωij is the discrete harmonic weight. In the latter case, the
entry is −�Ti ∆jωij . Note that these matrix entries on a
2-dimensional M are similar to those used in [31], where
the dot products �Ti ∆j are replaced by entries of some
rotation matrix defined on the edge {i, j}.

By deriving integrals of products of barycentric coordi-
nates, the integral of squared norm of g can also be written
in a quadratic form:∫

M

gT g = C3 (aT bT )

(
Mα,α Mα,β

Mβ,α Mβ,β

)(
a
b

)
(18)

where C3 is a constant and each (i, j)-th entry of the n×
n matrix M�,∆ (�,∆ denotes either α or β) is non-zero
only if i = j or j ∈ Ni. In the former case, the entry
is �Ti ∆i

∑
σ Vσ, where the summation is taken over all

highest-dimensional simplices σ (i.e., edge, triangle and
tetrahedron for a 1-, 2- and 3- dimensional M) sharing
vertex i, and Vσ is the length, area or volume of σ. In
the latter case, the entry is �Ti ∆j

∑
σ Vσ/2, where the

summation is now taken over all simplices σ that share
the edge {i, j}.

The solution (a, b) to the minimization problem of
Equation 15 is thus the eigenvector corresponding to the

Figure 5: Comparing the binormal (left), the Rotation Minimizing
Frames [11] (middle), and extrinsically smooth normal fields (right)
on two open curves (second one shown from two views) and a closed
curve. The normal vectors are shown in blue arrows, and the curves
are shown as ribbons. The ribbons in the left column are colored
by the squared curvature from green (low) to red (high). Note how
the extrinsically smooth field aligns with the binormal where the
curvature is high (e.g., see red outlines) and minimizes twist where
the curvature is low (e.g., see blue outlines).

smallest eigenvalue in the following generalized eigenvalue
problem:(

Aα,α Aα,β
Aβ,α Aβ,β

)(
a
b

)
= λ

(
Mα,α Mα,β

Mβ,α Mβ,β

)(
a
b

)
(19)

In our experiments, we have observed that the initial
fields obtained using our eigenvector approach are already
very close to being extrinsically smooth with few singu-
larities (see examples in Figure 4). In most of our tests,
iterative optimization only results in minor improvement
of the Dirichlet energy upon this initial field.

5. Experimental results

We demonstrate the extrinsically smooth direction
fields computed by our method for a number of problems
and compare with existing methods.
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Figure 6: Comparing the principal curvature fields t2 (middle-left), the Global Optimal Direction Fields [24] (middle-right), and extrinsically
smooth tangent fields (right) on three surfaces (the Beetle has boundaries). The normal vectors are shown in blue arrows and singularities in
red. The left column colors each surface by local anisotropy, (κ21 −κ22), from blue (low) to red (high). Note how the extrinsically smooth field
aligns with t2 where the anisotropy is high (e.g., see red outlines) and minimizes twist where the anisotropy is low (e.g., see blue outlines).

Normal directions on a curve. We compare extrinsically
smooth normal directions with the binormal along the
curve and the Rotation Minimizing Frames (RMF) [11]
that minimize intrinsic variation. RMF produces a se-
quence of aligned normal frames along the curve, and
any sequence of corresponding vectors in these frames are
equally smooth in the intrinsic sense. For comparison pur-
poses, we pick the sequence of vectors that matches our
extrinsically smooth direction at one end point of an open
curve or an arbitrary point on a closed curve. The results
on three example curves are shown in Figure 5.

Observe that the binormal captures the local shape of
the curve. For example, the binormal along a near-planar
curve segment is normal to the underlying plane. How-
ever, the binormal is undefined where the curve is only
C1 continuous (e.g., the first example) or where the cur-
vature is zero (e.g., the second example), and it can vary
significantly where the curvature is low (e.g., the third ex-
ample). On the other hand, although the direction fields
derived from RMF appear very smooth, they do not reveal

the shape of the curve: they are insensitive of whether the
curve is locally planar or not. The extrinsically smooth
field seems to combine the best of these two fields: by
aligning to the binormal where the curvature is high, it
better captures the local shape of the curve than RMF (see
regions outlined in red); by maximizing intrinsic smooth-
ness where the curvature is low, it avoids the instability
and twists of the binormal (see regions outlined in blue).

One application of the extrinsically smooth normal
field is generating ribbon visualizations. In Figure 5, the
cross-sections of the ribbons are elongated in the orthog-
onal direction to the computed normals. Compared with
ribbons generated from the binormal and RMF, ribbons
generated from extrinsically smooth fields reveal the curve
shape while minimizing twists. Physically speaking, such
ribbons also have the minimal bending energy (see discus-
sion in Section 3.2).

Tangent directions on a surface. We compare extrinsically
smooth tangent fields with the principal curvature field t2
(associated with the principal curvature of smaller magni-
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Figure 7: Rockarm: plot of local anisotropy (κ21 − κ22) (top-left), the
principal curvature field t2 (top-middle), the extrinsically smooth
tangent field (top-right), and the curvature-aligned GODF [24] (bot-
tom) with increasing alignment strength λ. The Dirichlet energy (E)
and number of singularities (S) for each field are shown. Note that a
large magnitude of λ allows GODF to align to strong shape features
(e.g., the ridge in the red outline) at the cost of creating unwanted
twisting and singularities.

tude) and the Global Optimal Direction Fields (GODF)
[24] that minimize intrinsic variation. We orient the un-
directed t2 using a minimum-spanning tree over the edge
graph of the mesh [21]. The results on three examples are
shown in Figure 6.

Although the principal curvature direction t2 follows
prominent ridges and valleys (see Figure 3), it is inherently
unstable in regions where the anisotropy measure (κ2

1−κ2
2)

is low (cf. the plot of anisotropy in the left column). On
the other hand, while GODF is smooth and has few sin-
gularities, in general it does not follow any features of the
surface. The extrinsically smooth field combines the best
of both: by aligning to t2 where anisotropy is high, it bet-
ter conforms to strong surface features than GODF (see
regions outlined in red); by maximizing intrinsic smooth-
ness where the anisotropy is low, it avoids the instability
of t2 (see regions outlined in blue).

The GODF method [24] can optionally produce a
curvature-aligned and smooth 1-vector field using a curva-
ture guidance field (we fed the method with the oriented
t2 field). The alignment strength is controlled by a param-
eter λ, which needs to be manually tuned. In some cases,
like the one shown in Figure 7, it is challenging to find a
suitable parameter: while a large magnitude of λ is needed
to align the field with strong features (including the ridge
in the red outline), the same parameter value also creates
unwanted twisting and singularities caused by alignment

to less obvious features. In comparison, the extrinsically
smooth field achieves better feature alignment with less
twisting and fewer singularities, and there is no need for
parameter-tuning.

Figure 8: Input field f within a 3-dimensional volume (top), the
extrinsically smooth direction field g (middle), and the tile-based
visualization (bottom) of f where each tile is created by directions
f and g. Note that, compared to the line segments (top), the tiles
(bottom) significantly enhance the perception of f .

Other direction field problems. We explore two other prob-
lems with practical implications.

First, consider the problem where M is a curve and
f is an arbitrary smooth vector field along M . One may
consider M as the pre-planned path of a virtual camera,
and f being the “LookAt” vector of the camera that aims
at a static or moving object as the camera travels along M
(Figure 9 far-left). In this interpretation, the sought or-
thogonal direction field, g, serves as the “Up” vector of the
moving camera. It is well known that the standard prac-
tice of projecting a global Z vector onto the orthogonal
plane of f results in camera flips when f is near-parallel
to Z (Figure 9 middle-left). Another approach is using the
cross-product of successive LookAt vectors (which in fact
approximates the second eigenvector e2 of matrix J), but
the result can be unstable when successive LookAt vectors
are near co-linear (Figure 9 middle). One may also min-
imize the “rolling” of camera around the LookAt vector
by the parallel-transport of an initial Up vector along the
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Figure 9: Different methods for creating Up vectors (blue arrows) from a camera path and LookAt vectors (red arrows) along the path
(far-left, green dot is the focal point): projection of a global Z vector (middle-left), using cross-product of successive LookAt vectors (middle),
parallel-transporting an initial Up vector (middle-right), and an extrinsically smooth Up vector field (far-right). Note that the last field is
smooth and minimizes both rolling and pitching motion of the camera.

curve, but the resulting camera may have large “pitching”
motion (Figure 9 middle-right). In comparison, an extrin-
sically smooth Up vector field minimizes both rolling and
pitching of the camera (Figure 9 far-right).

Next, consider a 3-dimensional volume M with a
smooth direction field f within the volume. A potential
application for an extrinsically smooth direction field g or-
thogonal to f is enhancing the visualization of f . While f
is commonly visualized by its samples or streamlines [32],
these 1-dimensional geometric primitives do not easily con-
vey the 3-dimensional shape of f (Figure 8 top). We can
turn these lines or curves into 2-dimensional tiles or rib-
bons using the g direction. In the simplest case, we can vi-
sualize each sample vector of f as a rectangular tile whose
long and short sides are aligned with f and g, respectively
(Figure 8 bottom). The resulting tiles not only enhance
the 3-dimensional feel of the visualization but also reveals
the variation of f itself, since g strives to stay orthogonal
to the direction of greatest variation of f .

Performance. Our method was implemented in C++ on
a 2.5 GHz Intel Core i7. Initializing the field (Section 4.3)
takes between 0.047 and 4.406 seconds for M ranging from
1200 to 61844 vertices. Iterative optimization (Section 4.2)
takes between 0.192 and 10.276 seconds.

6. Conclusion

In this paper, we advocate extrinsic smoothness in de-
signing direction (i.e., unit vector) fields for a variety of
problem settings. We give a simple geometric explana-
tion of the relation of extrinsic variation and the shape of
the underlying domain in two motivating problems, find-
ing normal fields over a curve and finding tangent fields
over a surface. We enrich, justify, and improve an existing
optimization framework to compute extrinsically smooth
fields over curves, surfaces, and volumes.

In the future, we would like to explore the extension
of our analysis in several directions, including general n-
vector fields and direction fields in domains of higher di-
mensions (e.g., for use in visualizing time-varying flow

fields). It would also be interesting to investigate how
vector field topology can be incorporated as an additional
constraint to produce fields that are not only smooth and
conforming to shape, but also having a prescribed topo-
logical structure (e.g., location and index of singularities,
a given network of separatrices, etc.).
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[17] Fisher M, Schröder P, Desbrun M, Hoppe H. Design of tangent
vector fields. ACM Trans Graph 2007;26(3).

[18] Ray N, Vallet B, Li WC, Lévy B. N-symmetry direction field
design. ACM Trans Graph 2008;27(2):10:1–10:13.

[19] Ray N, Vallet B, Alonso L, Levy B. Geometry-aware direction
field processing. ACM Trans Graph 2009;29(1):1:1–1:11.

[20] Bommes D, Zimmer H, Kobbelt L. Mixed-integer quadrangu-
lation. ACM Trans Graph 2009;28(3):77:1–77:10.

[21] Crane K, Desbrun M, Schrder P. Trivial connections on discrete
surfaces. Comput Graph Forum 2010;29(5):1525–33.

[22] Lai Y, Jin M, Xie X, He Y, Palacios J, Zhang E, et al. Metric-
driven rosy field design and remeshing. IEEE Trans Vis Comput
Graph 2010;16(1):95–108.

[23] Li G, Guo L, Nie J, Li K, Liu T. Direction field diffusion on
cortical surface via graph cuts. In: IEEE Conference on Com-
puter Vision and Pattern Recognition, CVPR Workshops 2010,
San Francisco, CA, USA, 13-18 June, 2010. 2010, p. 95–102.
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surfaces. ACM Trans Graph 2015;34(4):39:1–39:11.

[32] McLoughlin T, Laramee RS, Peikert R, Post FH, Chen M. Over
two decades of integration-based, geometric flow visualization.
In: Eurographics 2009 - State of the Art Reports, Munich, Ger-
many, March 30 - April 3, 2009. 2009, p. 73–92.

12


