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We propose a new method for reconstructing an implicit surface from an

un-oriented point set. While existing methods often involve non-trivial

heuristics and require additional constraints, such as normals or labelled

points, we introduce a direct definition of the function from the points as the

solution to a constrained quadratic optimization problem. The definition has

a number of appealing features: it uses a single parameter (parameter-free

for exact interpolation), applies to any dimensions, commutes with similarity

transformations, and can be easily implemented without discretizing the

space. More importantly, the use of a global smoothness energy allows our

definition to be much more resilient to sampling imperfections than existing

methods, making it particularly suited for sparse and non-uniform inputs.
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1 INTRODUCTION
Constructing a curve or surface that interpolates or approximates a

given set of 2D or 3D points is one of the fundamental problems in

geometric modeling. A common representation of the reconstructed

output is the zero-level set of some smooth implicit function. This

representation naturally ensures a smooth and closed manifold. In

addition, an implicit function enables a range of applications such

as boolean operations and collision detection.

While extensively studied [Berger et al. 2017], implicit modeling

from points remains a difficult problem. A fundamental challenge

is that the constant zero function, although meaningless for recon-

struction, perfectly meets our goal: the function is smooth and its

zero-level set (which includes the entire space) interpolates any

input points. A common approach to avoid this trivial solution is

to introduce additional constraints, such as normals at the input

points or additional spatial locations with inside/outside labels. If

such constraints are not available as part of the input or provided
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Fig. 1. Given sparse, non-uniform, noisy and un-oriented points (b) sampled
from a set of unstructured 3D curves (a), our variational definition (VIPSS
with λ = 0.003) simultaneously produces oriented normals (c) and a smooth
approximating surface (d). The input is challenging for state-of-the-art
normal estimation methods such as [Wang et al. 2011], which fails around
sparsely sampled thin features (the flippers) (e). Incorrect normals lead
to poor reconstructions using existing implicit methods such as Screened
Poisson [Kazhdan and Hoppe 2013] (f, fitting weight α = 0.5).

by the user, they will need to be inferred from the input data prior
to reconstruction.
This two-stage paradigm - constraint estimation followed by

reconstruction - has a number of drawbacks. The use of multiple

disparate methods, each carrying its own set of parameters, makes

parameter-tuning a challenging task and complicates the analysis

(e.g., how the output changes with the input). More importantly,

methods for constraint estimation are completely unaware of the

quality of the reconstructed surface. Lacking any better guidance,

current estimation methods (e.g., for normals) rely on local point

neighborhoods, which are often unreliable when the points are

sparse or non-uniformly distributed. Errors in constraint estimation,

in turn, lead to poorly reconstructed surfaces (e.g., Figure 1 (e,f)).

We propose a direct definition of an implicit function from an

un-oriented point set. Unlike the above-mentioned two-stage par-

adigm, our definition integrates constraint estimation and surface
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reconstruction within a single variational formulation. Specifically,

we seek an implicit function f minimizing some smoothness energy,
such that the input points lie close to the zero-level set of f and their
gradients of f have unit magnitude. The rationale for constraining
unit gradient is two fold. First, unlike prescribing normals, this con-

straint does not require a separate estimation step. Second, such

constraint encourages the function to behave like a signed distance

function around the zero-level set. By a judicious choice of the

smoothness energy [Duchon 1977], we show that our definition

can be expressed as a standard constrained quadratic optimization

problem with closed-form coefficients. The variational problem can

be solved using off-the-shelf optimization packages without the

need to discretize the domain.

Our method has a number of advantages over the previous two-

stage paradigm. First, as an explicit definition, we can analyze prop-

erties of the reconstruction as a function of the input points. In this

paper, we show that the surface given by our definition reproduces

linear geometry and commutes with similarity transformations

(translation, rotation, uniform scaling). Second, our definition in-

volves only a single parameter (λ) that controls the accuracy of

approximation. If exact interpolation is desired, reconstruction is

completely parameter-free for any point set by setting λ = 0. Third,

we observed that the surfaces produced by our definition are much

more resilient to sparse or non-uniform samples than existing meth-

ods. We owe such robustness to our integrated formulation and

the chosen smoothness energy [Duchon 1977], which considers the

global shape of the reconstructed implicit function instead of local

neighborhood of points.

The main limitation of our method is its computational complex-

ity, which scales cubically with the number of points. While we are

actively exploring means to improve scalability, we demonstrate

the usefulness of our method in one application (surfacing unstruc-

tured 3D sketches) which result in sparse, non-uniform, un-oriented

samples that are challenging for existing reconstruction methods

(Figure 1).

Contributions. We make the following technical contributions:

• We introduce a variational definition of an implicit surface

directly from un-oriented points. The definition has a single

parameter, applies to any dimensions, and does not need

domain discretization or numerical integration (Section 3).

• We show several theoretical properties of the definition, in-

cluding exact interpolation, reproducing linear geometry, and

commuting with similarity transformations (Section 4).

• We propose an effective strategy for initializing the optimiza-

tion (Section 5.1).

2 RELATED WORKS

2.1 Surface reconstruction from points
We review the most relevant methods for surface reconstruction

from 3D point sets. For more in-depth and comprehensive discus-

sions of these and other methods, we refer readers to the latest

survey [Berger et al. 2017].

2.1.1 Combinatorial methods. One class of reconstruction algo-

rithms directly produce a triangulated surface whose vertices are

the input points. These methods are typically based on the Delaunay

triangulation of the points or its dual, the Voronoi Diagram (see

survey [Dey 2006]). Compared with implicit methods, the smooth-

ness of the surfaces created by combinatorial methods is limited

by the input sampling density. Also, a water-tight surface is not

always guaranteed. Furthermore, as these methods usually work

under the assumption that the input samples are dense enough with

respect to the local shape, sparse or non-uniform sampling may lead

to significantly degraded reconstruction quality (see Figure 11).

2.1.2 Implicit methods. We broadly classify implicit reconstruction

methods into three types: ones that require “signed” input (e.g.,

oriented normals or additional labelled points), ones that perform

signing in a post-process, and ones that do neither.

Requiring signed input. Most implicit methods require the input

points to be equipped with oriented normals. The Poisson recon-

struction method [Kazhdan et al. 2006] and its variants [Kazhdan

and Hoppe 2013; Manson et al. 2008; Pan and Skala 2012; Taubin

2012] seek an “indicator function” that is 1 (resp. 0) in the interior

(resp. exterior) of the shape and whose gradient near the shape’s

boundary agrees with the given normals. The implicit moving least

squares (IMLS) method defines a local polynomial, such as a con-

stant [Dey and Sun 2005; Kolluri 2008; Öztireli et al. 2009; Shen

et al. 2004] or an algebraic sphere [Guennebaud and Gross 2007],

at each spatial location that fits nearby samples and normals. Note

that these methods are different from another group of methods

(also called moving-least squares) that employ a projection operator

[Alexa et al. 2003], whose result is generally not a level set of an

implicit function [Amenta and Kil 2004]. IMLS using a constant

polynomial effectively blends linear functions defined by the tan-

gent planes at the input points. The same strategy has been used in

several other methods with different choices of the blending weights

[Barill et al. 2018; Boissonnat and Cazals 2002; Hoppe et al. 1992; Lu

et al. 2018]. More generally, the partition-of-unity method [Ohtake

et al. 2003a] blends polynomials that are fitted to groups of points.

Another tool for implicit reconstruction from signed input is ra-

dial basis functions (RBF). RBF interpolants for scattered data have

been extensively studied in the literature [Buhmann 2003;Wendland

2004]. Unlike IMLS and partition-of-unity, an RBF interpolant is a

linear combination of fixed radial basis kernels (typically centered at

the input points) blended with a fixed set of weights chosen so that

the given values at the input points are interpolated. To avoid the

trivial interpolant of constant zero, most reconstruction methods

that use RBF introduce additional spatial locations equipped with

signed values [Carr et al. 2001; Dinh et al. 2002; Morse et al. 2001;

Ohtake et al. 2003b; Samozino et al. 2006; Turk and O’Brien 2002;

Walder et al. 2007]. These locations are often created by offseting

along a sample’s normal. However, care must be taken in determin-

ing the offset amount, particularly near thin features. Alternatively,

some authors [Brazil et al. 2010; Ijiri et al. 2013; Liu et al. 2016] apply

a Hermite variant of the RBF interpolant [Duchon 1977] directly to

the input points and normals.

All methods in this class interpolate or closely approximate the

normals at the input points. As a result, their reconstruction quality

relies heavily on the accuracy of normal estimation. In this work, we

use the Hermite RBF interpolant of [Duchon 1977] (which we call
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Duchon’s interpolant and will discuss in details in Section 3.2). How-

ever, our variational formulation removes the need for estimating

the normals.

Signing in a post-process. A number of methods first create an un-

signed distance function from the input points and then determine

the sign afterwards. Various strategies were used for signing, includ-

ing graph-cut [Hornung and Kobbelt 2006], ray-shooting [Mullen

et al. 2010], watershed [Poranne et al. 2010], and energy minimiza-

tion [Giraudot et al. 2013]. While these methods can be applied

directly to un-oriented points, the heuristic nature of the signing

step makes it difficult to analyze the results of these methods. Also,

the two-stage pipeline involves several parameters that need to be

carefully tuned.

Variational methods. Like our method, several other methods di-

rectly reconstruct a signed function from un-oriented points using

some variational formulation. Zhao and colleagues [Lu et al. 2005;

Zhao et al. 2001] employ the level-set method to minimize an en-

ergy that balances fitting error and surface curvature, resulting in a

weighted minimal surface. After computing un-oriented normals

at the samples, Alliez et al. [2007] seek an implicit function whose

gradients best align with the un-oriented normals under the con-

straint that the weighted sum of biharmonic energy and fitting error

has unit norm. Both Scholkopf et al. [2004] and Walder et al. [2005]

propose un-constrained formulations using scalar (non-Hermite)

RBF interpolants. Scholkopf et al. minimize a weighted sum of three

energy terms. Walder et al. point out that Scholkopf’s formulation

leads to ill-shaped functions, and they replaced the last component

of Scholkopf’s objective by two more energy terms.

The above formulations (except for the level-set methods) all

involve multiple parameters for balancing the various energy terms

and/or constraints. Also, solving for these variational problems may

require domain discretization (e.g., [Alliez et al. 2007] and level-set

methods) or numerical integration (e.g., [Walder et al. 2005]), which

introduces additional parameters as well as dependencies on the

discretization structure or resolution. In contrast, our definition has

a single parameter (which is fixed in the interpolation mode), and no

discretization is needed for optimization. We also observed that our

formulation tends to behave more robustly under sparse sampling

(see Figure 11).

2.2 Normal estimation
As mentioned above, normal estimation is required by many im-

plicit reconstruction methods. Existing estimation methods can be

classified into two types, ones that separately estimate the direction

and orientation (i.e., forward or backward) of normals, and ones

that estimate both at once.

Estimation and orientation of un-oriented normals. A common

strategy for estimating un-oriented normal directions is by fitting

the local neighborhood of a point with a function. Linear functions

are most common [Hoppe et al. 1992] (also known as the PCA

method), but higher-order polynomials have also been used [Cazals

and Pouget 2003; Guennebaud and Gross 2007]. It is well-known that

the choice of the point neighborhood is crucial to the accuracy of

estimation, and various proposals were made to deal robustly with

noisy samples [Mitra et al. 2004; Pauly et al. 2003] and sharp features

[Boulch and Marlet 2012; Li et al. 2010; Liu et al. 2015]. Another

strategy is based on analyzing the shape of individual [Amenta and

Bern 1999; Dey and Goswami 2004] or a group of [Alliez et al. 2007;

Merigot et al. 2011] Voronoi cells. While many of these methods

can successfully handle noisy samples, they tend to fail when the

sampling rate is low or the pattern is not uniform (see Figure 8).

Orienting the un-oriented normals can be treated as a combi-

natorial optimization problem. The choice of energy varies from

simple consistency among neighboring normals [Hoppe et al. 1992]

to more sophisticated ones that better handle thin features [Huang

et al. 2009; König and Gumhold 2009; Xie et al. 2003]. The energy

can be minimized by a minimal spanning tree [Hoppe et al. 1992] or

a global solver [Schertler et al. 2017]. However, if the un-oriented

normal has a wrong direction (e.g., orthogonal to the true normal),

it cannot be corrected by the orientation step.

Direct estimation of oriented normals. Wang et al. [2011] proposed

a variational method that estimates both the direction and orienta-

tion of normals in a single step. They formulate a quadratic opti-

mization problem that minimizes the weighted sum of two energy

terms on each pair of nearby normals, a consistency energy similar

to [Hoppe et al. 1992] and an orthogonality energy. In our exper-

iments, we found this method outperforms the two-step methods

mentioned above for sparse and non-uniform samples, but tuning its

parameters can be challenging (see Section 6.2 and Figure 9). While

our definition solves a similar quadratic optimization problem, our

objective captures the global regularity of the implicit function,

which leads to more robust results while removing the need for

parameter tuning.

Recently, deep learning has been employed to infer oriented nor-

mals from point clouds [Boulch and Marlet 2016; Guerrero et al.

2018]. These methods can produce impressive results on densely

sampled points contaminated with noise. However, we found that

they are less successful on sparse samples (see Figure 9).

3 DEFINITION
We introduce our definition of the point set surface in this section.

We first give a general definition for any choice of smoothness

energy, and then specialize it to a particular energy that leads to a

simple and computable definition.

Notations. In this paper, scalar values are italicized (e.g., x ), vector
values are bold (e.g., x), and matrices are capitalized (e.g., M). All

vectors are assumed to be column vectors. We use Di
to denote

taking the i-th derivative (or gradient, if the variable is a vector),

andD = D1
. For a two variable function f (·, ·), we useDi, j

to denote

taking the i-th partial derivative of the first variable and j-th partial

derivative of the second variable. ∥ · ∥ denotes the L2 norm.

3.1 A general definition

Given a set of points xi ∈ Rd (i = 1, . . . ,n), we wish to define a

smooth implicit function f (x) whose zero-level set is as close to xi
as possible. As mentioned earlier, to avoid the trivial solution f ≡ 0,

we need an additional constraint. To this end, we note that existing

implicit modeling methods either look for a true signed distance
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function, or an “indicator function” that is close to a signed distance

function near the shape boundary. In the same spirit, we require that

the gradient of f should have unit magnitude at each input point.

Unlike signed constraints, such as normals or labelled points, the

unit-gradient constraint does not need to be provided or estimated

a priori. Note that the same constraint has been used previously for

fitting implicit primitives such as spheres [Guennebaud and Gross

2007; Pratt 1987].

We arrive at the following variational definition of an implicit

point set surface:

Definition 3.1. The variational implicit point set surface (VIPSS) of
points xi ∈ Rd , for a chosen energy E and approximation parameter

λ, is the zero-level set of a function f ∈ Rd that

Minimizes:

∑
i f (xi )2 + λ E(f )

Subject to: ∥Df (xi )∥ = 1, ∀i (1)

Here, λ balances the two goals of data fitting and smoothness. A

larger λ leads to a smoother surface at the cost of a less accurate

approximation of the input points.

A key ingredient of this definition is the energy E, which needs to

be appropriately chosen for the definition to be meaningful and prac-

tical. On one hand, lower E values should correspond to a smoother

zero-level set of f . This requires an energy of at least 2nd-order, so

that linear functions (whose level sets are hyperplanes, which are

perfectly smooth) have zero energy. On the other hand, the energy

should make the variational problem computable, and ideally not

requiring any discretization of the domain.

We describe one class of energy E that makes Definition 3.1

computation-friendly without discretization. Suppose we are given

an additional set of Hermite data s = {si } and g = {gi }, so that each
point xi is equipped with a scalar si and a (possibly un-normalized)

vector gi . Let fs,g be the interpolating function with minimal energy,

fs,g = argmin

f
{E(f )| f (xi ) = si , Df (xi ) = gi ,∀i}

The solution to the constrained optimization problem of (1) is there-

fore the interpolant fs,g for the Hermite data {s, g} that

Minimizes: sT s + λ E(fs,g)

Subject to: giT gi = 1, ∀i (2)

Conceptually, while fs,g smoothly interpolates a givenHermite data,

we look for the best Hermite data (under the unit-vector constraint)

that results in the smoothest interpolant fs,g. If energy E is chosen

such that the energy-minimizing Hermite interpolant fs,g, as well
as its energy E(fs,g), can be expressed in closed-form by s and g,
then (2) becomes a constrained optimization problem on a finite

variable set (s, g).
Next, we review one choice of E that has the above characteristics,

namely being (at least) 2nd-order and that the energy-minimizing

Hermite interpolant has closed form (Section 3.2). With this choice,

we will show that Definition 3.1 becomes a constrained quadratic

optimization problem (Section 3.3).

3.2 Duchon’s energy
Our formulation builds upon the Hermite interpolant first developed

by Duchon [1977] using radial basis functions (some authors have

called it theHermite RBF interpolant). We briefly review its definition

and properties, and refer the reader to more in-depth discussions in

[Wendland 2004].

To interpolate Hermite data {si , gi } at a set of locations xi in Rd ,
Duchon’s interpolant consists of a linear combination of radial basis

kernels ϕ(x, y) = ∥x − y∥3 (known as the triharmonic kernel for

d = 3), their derivatives, and other low-degree terms:

fs,g(x) =
∑
i
aiϕ(x, xi ) +

∑
i
bTi D

0,1ϕ(x, xi ) + cT x + d (3)

where ai ∈ R, bi ∈ Rd , c ∈ Rd ,d ∈ R are constants determined by

{si , gi }. Specifically, these constants need to satisfy the interpolatory
conditions (fs,g(xi ) = si ,Dfs,g(xi ) = gi for all i) and additional

orthogonality conditions including

∑
i ai = 0 and

∑
i aixi +

∑
i bi =

0 to ensure the existence of a unique solution. All of these conditions

can be expressed by a system of linear equations

A
©«
a
b
c
d

ª®®®¬ =
©«
s
g
0
0

ª®®®¬ (4)

where a = {ai }, b is the flattened array of {bi } of length d × n, and
g is the flattened array of gi of length d × n. The coefficient matrix

A of this system, called the interpolation matrix, has the form

A =

(
M N

NT 0

)
, M =

(
M00 M01

MT
01

M11

)
, N =

(
N0 1
N1 0

)
(5)

Here, the matricesM00,M01,M11 have dimensions n×n, n×dn, and
dn × dn respectively. Each (i, j)-th entry (or block) of matrixMα β

where α , β ∈ {0, 1} is the differential Dα,βϕ(xi , xj ). Note that both
M00,M11 are symmetric matrices. N0 has dimension n × d and its

i-th row is xTi . N1 has dimension dn × d and consists of n identity

matrices of dimension d × d .
Assuming that the points xi are pairwise disjoint, the matrix A

is always invertible and hence the constants a, b, c,d satisfying (4)

uniquely exist. In one dimension (d = 1), the resulting interpolant

fs,g coincides with the ordinary piecewise cubic Hermite interpo-

lation. In this sense, Duchon’s interpolant can be considered as a

generalization of cubic Hermite interpolation to arbitrary dimen-

sions. Figure 2 (a) gives examples of the interpolant in 1D and 2D

(with si = 0 and gi set to a constant for all i).
A key feature of Duchon’s interpolant is that it is optimal with

respect to a differential energy, which we call Duchon’s energy. In
one dimension (d = 1), Duchon’s energy of a function f is the

same as the classical thin plate energy (

∫
R
∥D2 f (x)∥2dx ). In higher

dimensions, the energy assumes a similar 2nd-order form but on

the Fourier transform of f (we refer the reader to [Duchon 1977]

for the precise form). It can be shown that, among all functions in a

semi-Hilbert space that all interpolate the same Hermite data, the

interpolant in (3) has the minimal Duchon’s energy. This energy is

in fact the semi-norm in this function space, which is equipped with

a semi-inner product defined by the radial basis kernels ϕ and their
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Fig. 2. Examples of Duchon’s interpolants fs,g that interpolate scattered points in 1D (top, red dots) and 2D (bottom, red circles) for different choices of the
Hermite data {s, g}. In (a), si = 0 and gi is a constant vector at each point. In (b,c,d), {s, g} are obtained by our variational formulation (8) with λ = 0, 0.1, 1.0

respectively. The zero-level set in (b,c,d) (black curves) is the VIPSS at the respective λ.

derivatives. The semi-norm (or Duchon’s energy) of the interpolant

in (3) has the form

E(fs,g) =
(
aT bT

)
M

(
a
b

)
(6)

3.3 Definition using Duchon’s energy
We now specialize the VIPSS definition (3.1) to the case where E
is chosen as Duchon’s energy. That is, we look for the scalars s
and unit vectors g that minimize the energy objective in (2) where

E(fs,g) is defined in (6).

While Duchon’s energy in (6) is expressed by the coefficients a, b
of the interpolant, we need to transform it to an expression on the

unknown Hermite data {s, g}. This is made possible by observing

that the two sets of quantities are linearly related, as indicated by

(4), via the interpolation matrix A. We first write the inverse of A as

A−1 =

(
J K

KT L

)
, J =

(
J00 J01
JT
01

J11

)
(7)

where matrices J , K , J00, J01, J11 have the respective sizes as M ,

N , M00, M01, M11 in (5), and J , L, J00, J11 are symmetric. We now

present our main result:

Proposition 3.2. The VIPSS of points xi , where E is Duchon’s
energy, is the zero-level set of fs,g defined in (3) for Hermite data
{s, g}, such that g

Minimizes: gTHg

Subject to: giT gi = 1, ∀i (8)

where
H = J11 − λJT

01
(I + λJ00)

−1 J01 (9)

and s is obtained from g by

s = −λ(I + λJ00)
−1 J01 g (10)

Proof. Using notations in (7), we have the linear relation(
a
b

)
= J

(
s
g

)
(11)

Substituting into (6) yields an expression of energy in terms of {s, g},

E(fs,g) =
(
sT gT

)
J M J

(
s
g

)
(12)

To simplify this expression further, note that by A−1A = I we have
J M + K NT = I and J N = 0. Therefore,

J M J = (I − K NT ) J

= J − K NT J

= J − K (J N )T

= J

which leads to

E(fs,g) =
(
sT gT

)
J

(
s
g

)
(13)

Hence the objective in (2) is a quadratic function on {s, g},

sT s + λ
(
sT gT

)
J

(
s
g

)
(14)

For a given g, (14) is minimized when s is given by (10), and the min-

imum has the form λgTHg where H is defined in (9). By dropping

the constant λ, we have proven the proposition. □

We add two technical notes here. First, matrix I +λJ00 is invertible
for generic values of λ, as long as −1/λ is not an eigenvalue of J00.
Second,H is a positivie semi-definite matrix, since λgTHg is the sum
of sT s and Duchon’s energy of fs,g, both of which are non-negative

for any choice of g.
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One may observe that Proposition 3.2 transforms the problem of

finding an implicit function (1) to that of finding unit vectors (nor-

mals) g at the input points (8). From this perspective, our definition

offers another way of estimating normals from un-oriented points.

The key distinction between our formulation and existing normal

estimation approaches is that, while the latter is guided by the local

shape of point samples, ours is guided by the global shape of the

reconstructed implicit function (via minimizing Duchon’s energy).

As we shall see in the experimental results, the coupling of normal

estimation with reconstruction allows our method to better deal

with imperfect sampling than previous methods.

Figure 2 (b,c,d) give examples of the VIPSS specialized to Duchon’s

energywith varying values of λ (0, 0.1, 1) in both 1D and 2D. Observe

that the VIPSS in 2D is able to interpolate or approximate sparse and

non-uniformly distributed points. Increasing λ results in smoother

curves that deviate further from the input. At λ = 0, the VIPSS

exactly interpolates the points (a property that will be discussed in

the next section).

4 PROPERTIES
We show that the VIPSS satisfies a few basic properties that are

desirable for surface reconstruction.

4.1 Exact interpolation
It is easy to see that the VIPSS interpolates all the input points

when λ = 0. In this case, s = 0 by (10), which implies that the

Duchon’s interpolant fs,g is precisely zero at each xi . Note that,

since the fitting is exact, the optimization problem (1) in the general

definition of VIPSS reduces to a parameter-free form:

Minimizes: E(f )

Subject to: ∥Df (xi )∥ = 1, f (xi ) = 0, ∀i
4.2 Linear reproduction
Since Duchon’s energy is 2nd-order, the VIPSS reproduces linear

geometry. Specifically, suppose that xi span a (d − 1)-dimensional

hyperplane inRd (e.g., a line in 2D or a plane in 3D). Such hyperplane

can be defined as the zero-level set of some linear function f , which
has vanishing objective in (1). By choosing the f with a unit gradient,
we have found a solution to the variational problem of (1), whose

zero-level set (the VIPSS) is the hyperplane.

4.3 Commutativity with similarity transformations
Ideally, a reconstructionmethod should be invariant to the change of

the coordinate system. In other words, the reconstruction operator

should commute with similarity transformations (e.g., translation,

rotation, and uniform scaling): reconstructing from the transformed

points should be equivalent to transforming the reconstruction from

the original points.

Commutativity to isometry (translations and rotations) is a direct

consequence of the invariance of Duchon’s energy to isometry.

Consider a set of transformed points x̃i = T (xi ) where T is an

isometry. For any function f , the objective in (1) with respect to the

original points xi is the same as the objective of the transformed

function
˜f (x) = f (T−1(x)) with respect to the transformed points

x̃i . Since gradient magnitudes are preserved under isometry, we

conclude that, if f is the solution to (1) for xi , ˜f must be the solution

for x̃i .
Duchon’s energy is not invariant to uniform scaling, but is multi-

plied by some power of the scale. To ensure that the VIPSS commutes

with scaling, the value of λ needs to be properly scaled with the

input points. As the next proposition shows, λ should scale cubically
with the data size.

Proposition 4.1. Let f be the solution to (1) using Duchon’s energy
for a given point set xi and λ, and w > 0. Then ˜f (x) = w f (x/w) is
the solution for points x̃i = wxi (i = 1, . . . ,n) and ˜λ = w3λ.

Proof. In the following, we use symbol ˜ for quantities involving

the transformed points x̃i . We first note that

ϕ(wx,wy) = w3ϕ(x, y)
D0,1ϕ(wx,wy) = w2D0,1ϕ(x, y)
D1,1ϕ(wx,wy) = wD1,1ϕ(x, y)

Hence matrix Ã in (4) for x̃i is related to A for xi by

Ã = w−3W AW

whereW is a diagonal matrix whose diagonal consists of n of w3
,

dn ofw2
, d ofw , and a single 1, in order. The inverseW −1

is also a

diagonal matrix, whose diagonal consists of n ofw−3
, dn ofw−2

, d
ofw−1

, and a single 1, in order. Thus we have the following relation

between the inverses, Ã−1
and A−1

,

Ã−1 = w3W −1 A−1W −1

and the relations between the sub-matrices,

J̃00 = w
−3 J00, J̃01 = w

−2 J01, J̃11 = w
−1 J11

Substituting the above into (9) and noting that
˜λ = w3λ yields

H̃ = w−1H

Therefore, if g minimizes gTHg, then it also minimizes gT H̃g. For
notational consistency, we denote g̃ = g. By (10), we have s̃ = ws.
As a result,

©«
ã
b̃
c̃
˜d

ª®®®¬ = Ã−1
©«
s̃
g̃
0
0

ª®®®¬ = w
−3W −1A−1W −1

©«
ws
g
0
0

ª®®®¬ =
©«
w−2a
w−1b
c
wd

ª®®®¬
Substituting the above into the definition of Duchon’s interpolant (3)

yields fs̃, g̃(x) = w fs,g(x/w). This proves the proposition, because

fs,g and fs̃, g̃ are the solutions to (1) for inputs {x, λ} and {x̃, ˜λ},
respectively, due to Proposition 3.2. □

The above proposition implies that the VIPSS of the scaled points

(zero-level set of
˜f ) is the VIPSS of the original points (zero-level set

of f ) scaled by the same factorw . In summary, the VIPSS undergoes

the same similarity transformation with the input data, as long as

parameter λ is multiplied by the cubic power of the scaling factor

whenever uniform scaling is involved.
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5 IMPLEMENTATION
Reconstructing the VIPSS from a point set involves four steps:

(1) Computing matrix H . This involves constructing the interpo-

lation matrix A by (4), computing its inverse A−1
, and com-

puting H from sub-matrices of A−1
by (9).

(2) Optimizing vectors g by (8).

(3) Constructing Duchon’s interpolant fs,g. This involves recov-
ering interpolated values s from g by (10) and then the con-

stants a, b, c,d in fs,g by A
−1 · {sT , gT , 0T , 0}T .

(4) Surfacing the zero-level set of fs,g.

Steps (1,3) can be done using standard linear algebra packages

(we use Armadillo). To solve the constrained optimization problem

of (8), we first convert it into an unconstrained problem by rep-

resenting each gi using two spherical angles and then solve it by

the L-BFGS method (we use NLopt and its default parameters, with

3000 maximum iterations). For step (4), one may use any available

method that polygonalizes level sets of implicit functions. Since the

input points are usually close to the zero-level surface, we use a

tracing-based marching cubes method [Bloomenthal 1994] at a fixed

grid resolution (100
3
to 200

3
in our experiments) that starts from a

data point. More advanced meshing methods, such as [Boissonnat

and Oudot 2005], can be applied to produce surfaces with better

triangle shapes.

Aswithmany non-linear optimization problems, the quality of the

solution depends heavily on the quality of the initialization. In the

following (Section 5.1), we describe a practically effective method

for initializing our optimization problem. We end this section with

a complexity analysis (Section 5.2).

5.1 Initializing the optimization
Optimization formulations like ours (8) commonly appear in the

literature on computing direction fields [Vaxman et al. 2016]. A

typical initialization strategy is relaxing the per-vector unit-norm

constraint (giT gi = 1) to constraining the total norm of all vectors

to be one (gT g = 1). By the Rayleigh Quotient Theorem, the minimal

value of gTHg under the relaxed constraint is achieved when g is the
eigenvector ofH with the smallest eigenvalue (denoted by eH ). This

eigenvector, after normalization, is then used as the initial solution

to start the optimization under the original, per-vector unit-norm

constraint [Huang and Ju 2016].

However, the spectral initialization strategy often fails for our

problem. In these failure cases, there is a significant variation among

the norms of individual vectors ∥gi ∥ derived from eH . Those vectors

with extremely small norms tend to be less accurate, and such vec-

tors often form clusters with “flipped” orientations that are difficult

to be corrected by optimization. We illustrate such a case in 2D

in Figure 3 (a,b). Note that the initial vectors associated with the

lower points in (a) have very small lengths, and their orientations

are opposite to those vectors associated with the upper points (see

zoom-in). Optimizing from this initialization leads to a high-energy

local minimum shown in (b).

To find more stable initial vectors, we observed that the norms of

individual vectors ∥gi ∥ derived from eH tend to be more uniformly

Fig. 3. Initial vectors generated using the spectral method with λ = 0 (a)
contains vectors with very small magnitudes and flipped orientations (see
insert, vectors shown with 20x scaling), which leads to a high-energy result
after optimization (b). Initial vectors generated with λ = 0.01 (c) and 0.1 (e)
are more uniform, and they lead to the same low-energy result (d,f) after
optimization with λ = 0.

distributed, both in length and in direction, as λ increases. This

can be conceptually explained by the fact that a larger λ leads to

a smoother interpolant, whose gradients at the input points are

more similar with each other. We can also provide a more rigorous

argument in the limiting case of λ → ∞:

Proposition 5.1. As λ → ∞, any g = {gi } where gi = gj for all
pairs i, j is an eigenvector of H with zero eigenvalue.

Proof. By JN = 0, where J is defined in (7) and N in (5), we

have

J00 N0 + J01 N1 = 0
JT
01

N0 + J11 N1 = 0
We then have

H N1 = J11N1 − JT
01
(I/λ + J00)

−1 J01N1

= −JT
01
N0 + JT

01
(I/λ + J00)

−1 J00N0

As λ → ∞, (I/λ + J00)
−1 J00 → I . Therefore

H N1 → −JT
01
N0 + JT

01
N0 = 0

As a result, the columns of N1 are eigenvectors ofH with zero eigen-

values as λ → ∞. Since the g in the proposition can be expressed as

a linear combination of the columns of N1, it is also an eigenvector

of H with zero eigenvalue. □

In other words, the output of spectral initialization tends toward

a constant vector field as λ → ∞. Hence it can be expected that,

as λ increases, vectors produced by spectral initialization become

increasingly more uniform. We illustrate this behavior in Figure 3
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Fig. 4. Top row: sampling a torus surface with decreasing density (a,b,c,d with 500, 200, 50, 25 points respectively), varying sampling density (e), missing
samples (f,g), and along 1-dimensional curves (h,i). Middle row: optimized vectors g visualized as oriented disks (green/blue: front/back side). Bottom row: the
VIPSS (λ = 0) colored by distance from the original torus surface (see color bar; the percentages are of the largest dimension of the shape).

(c,e) for two different values of λ (0.01, 0.1) on the same point set

as (a). Using either set of vectors as the initial solution, optimizing

(8) with λ = 0 successfully reaches the same low-energy solution

shown in (d,f).

Guided by the observation, we propose to compute not one, but

multiple candidate initializations corresponding to different values

of λ. We pre-define a set of “offset” values {λ1, . . . , λk }. Let λ0 be
the parameter chosen by the user for the VIPSS. For each λi , we
construct thematrixH using λ = λ0+λi and compute its eigenvector

eH . This gives us k initial solutions. We then optimize (with λ = λ0)
for k times, each time starting from one of the initial solutions, and

take the optimized result with the least energy. We use the offset

values {0, 0.001, 0.01, 0.1, 1} in our tests, assuming the data is scaled

to fit in a 2 × 2 × 2 cube.

5.2 Complexity analysis
The asymptotic complexity of running time, with respect to the

dimensionality d and number of input points n, of the four steps
described at the beginning of Section 5 are as follows:

(1) O(d3n3):O(d3n2) for constructingA,O(d3n3) for invertingA,
and O(n3 + d2n3) for constructing H .

(2) O(d3n3): O(d3n3) for computing the eigenvector of H with

the smallest eigenvalue, and O(ld2n2) for gradient-descent
optimization, where l is the number of descent iterations

(which is typically much smaller compared to n).
(3) O(d2n2):O(dn2) for computing s, andO(d2n2) for recovering

the constants a, b, c,d .
(4) O(mdn) wherem is the number of points at which the surfac-

ing algorithm evaluates the interpolant.

It is clear from the analysis that the bottlenecks of the algorithm

are the inversion of matrix A and finding the eigenvector of matrix

H , both takingO(d3n3) time. Note thatA is a dense matrix due to the

global nature of the triharmonic basis. While we have observed that

H often contains a large amount of close-to-zero entries, particularly

for uniformly sampled points and a small value of λ, the sparsity
tends to decrease with the increase of non-uniformity in sampling

and noise level (which necessitates larger values of λ).

6 EXPERIMENTS
We show experimental results of our method in 3D under varying

sampling conditions and compare with relevant methods for normal

estimation and surface reconstruction. We end this section with a

performance report and an application. In our examples, uniform

sampling from existing surfaces is generated using the Poisson-disk

sampling method [Corsini et al. 2012] implemented in MeshLab.

6.1 Results
We first evaluate our method under varying sampling densities and

patterns using a synthetic Torus surface (level set of a degree-4

polynomial). We fix λ = 0 to perform exact interpolation. As seen in

Figure 4, our method can reconstruct an almost perfect torus from

as few as 50 points (c), and a close approximation from 25 points

(d). Also, our method is robust under different types of non-uniform

sampling patterns, such as varying density (e), missing samples

(f,g), and highly anisotropic sampling along curves (h,i), unless the

samples are too ambiguous for inferring the shape (e.g., in (g)).

We next test our method on samples from more complex 3D

surfaces (Figures 5, 6) and wireframes (Figure 6). Again, we fix
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Fig. 5. VIPSS (λ = 0) for samples from Max Planck at different densities.

λ = 0. Observe in Figure 5 that the quality of VIPSS drops gracefully

under decreasing sampling density. Despite the sparsity and non-

uniformity of sampling in Figure 6, our method is able to faithfully

reconstruct various shape features, such as the fingers of the Hand,

protrusions of the Vertebra, ears of the Dog, etc.

Lastly, we test our method on noisy samples in Figure 7. Consis-

tent with our observations earlier in 1D and 2D (Figure 2), larger λ
values lead to smoother and less approximating surfaces, which are

suited for higher noise levels.

6.2 Comparisons
Normal estimation methods. We compare the oriented vectors g

resulted by our optimization (8) with those produced by existing

normal estimation methods.

We first consider methods that separately estimate directions and

orientations. Since errors in the un-oriented directions persist after

orientation, we will focus on issues in the direction estimation step.

We considered two prevalent methods for direction estimation, the

plane-fitting method of [Hoppe et al. 1992] (referred to as PCA)

and the Voronoi-based method of [Merigot et al. 2011] (referred

to as VCM). Both methods are based on analysis of local point

neighborhood, whose size is controlled by the number of nearest

neighbors (k in PCA) or a sphere radius (r in VCM). We found

that they both tend to fail on non-uniformly distributed samples,

where oftentimes a suitable neighborhood size cannot be found. As

shown in Figure 8, taking the Dog wireframe samples from Figure

6 as input, PCA requires a fairly large neighborhood (k = 30 in

(a)) to get a reasonable direction estimate for most points, while

still failing on some (see the red and blue boxes). Increasing the

neighborhood size (k = 50 in (b)) improves the directions at some

points (the red box), but makes others worse (the blue box), due

to the interference with nearby features (the dog ear). Similarly,

VCM at a small neighborhood size (r = 0.1 in (c)) produces many

Fig. 6. Left: uniform samples from two surfaces (Hand and Vertebra, with
500 points each) and two wireframes (Trebol with 500 points and Dog with
1000 points). Middle: optimized vectors g. Right: VIPSS at λ = 0.

incorrect directions (red box). A larger neighborhood (r = 0.25 in

(d)) improves some directions but results in over-smoothing at small

shape features (blue box).

Next we compare with the variational method of Wang et al.

[2011], which estimates oriented normals in a single step by solving a

quadratic optimization problem similar to ours (8). While our matrix

H is derived from the global smoothness of the implicit function,

theirs is based on two hand-crafted energy terms that measure

correlation between nearby normals. We have observed that, while

Wang’s method produces more stable results than two-step methods

for sparse and non-uniform inputs, careful tuning of its parameters

(neighborhood size and energy weighting) is required for individual

inputs. Even with our best effort in tuning, Wang’s method can still

fail for some inputs, such as the Walrus sketch (Figure 1 (e)) and the

Bathtub (Figure 9, third row), particularly near sparsely sampled

thin shape features (e.g., Walrus’ flippers and Bathtub’s curved wall).

These errors, in turn, lead to poorly reconstructed surfaces. Observe

that our method produces a plausible set of normals for both inputs,

and in turn better reconstructions.

We also compared with the deep-learning-based normal estima-

tion method, PCPNet [Guerrero et al. 2018] on the same Bathtub

example (Figure 9, bottom row). This method was unable to give any
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Fig. 7. (a): Two sampling of the Kitten (500 points each) at low (top, 1%) and
high (bottom, 5%) noise rate. (b,c): VIPSS with λ = 0.001 and 0.01.

Fig. 8. Comparing direction estimation on samples from a 3D wireframe
using PCA [Hoppe et al. 1992] and VCM [Merigot et al. 2011] with different
parameters. Each un-oriented direction is shown by a yellow tangent disk
and a line segment.

reasonable normals for the original 800-point sample, so we showed

their result on a denser sampling (3000 points). Even at this density,

PCPNet produces incorrect normal orientations for a significant

portion of the points, which leads to a poor reconstruction.

Surface reconstruction methods. As reviewed earlier, most implicit

reconstruction methods require oriented points as input. Hence

Fig. 9. Comparing normal estimation from a 800-point sample from the
Bathtub (cross-section shown in top-right) using VIPSS (λ = 0), variational
method of [Wang et al. 2011], and PCPNet [Guerrero et al. 2018] (on a
3000-point sampling). The surfaces for these methods are generated using
Hermite RBF interpolation (i.e., zero-level set of fs,g where s = 0 and g are
the estimated normals).

improved normal estimation (e.g., our optimized vectors g) would
benefit these existing methods.

In our setting, using Duchon’s interpolant (or so-called Hermite

RBF) has several advantages over other implicit reconstructionmeth-

ods. First, the interpolant fs,g can fully utilize the optimized Hermite

data s, g, not just the vectors g, in the case of approximation with

a non-zero λ (and hence non-zero s). Second, by Proposition 3.2,

Duchon’s interpolant using optimized Hermite data is theoretically

optimal in terms of the objective (1). Third, and in practice, we

observed that Duchon’s interpolant outperforms existing methods

for interpolating sparse, oriented points. In Figure 10, we compared

Duchon’s interpolant with Screened Poisson reconstruction [Kazh-

dan and Hoppe 2013] and Albegraic Point Set Surface (APSS) [Guen-

nebaud and Gross 2007] (an IMLS-type method) on the same input,

which is a 1000-point sampling of the Stanford Bunny with normals

computed by our method. Each of these methods has a parameter

that trades off smoothness with closeness of approximation (fitting

weight α in Screened Poisson, larger for a closer fit, and filter scale h
in APSS, smaller for a closer fit). Observe that closer approximation

using these methods leads to surface artifacts (dimples in (d) and
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Fig. 10. Comparing Duchon’s interpolant (Hermite RBF) (b) with Screened
Poisson [Kazhdan and Hoppe 2013] (c,d) and APSS [Guennebaud and Gross
2007] (e,f) at different parameters on the same oriented input with 1000
points (a). Orientations in (a) are computed by our method with λ = 0.

tearing in (e)). On the other hand, Duchon’s interpolant results in

exact and smooth interpolation (b).

We next compare with a few methods that do not require ori-

ented points in Figure 11. The variational method of [Alliez et al.

2007] (b) has trouble handling sparse samples on thin shapes (e.g.,

the Bathtub), even after we used a very high data-fitting weight

in their formulation. Also, since the variational problem is solved

on a tetrahedralization of the domain, their method produces less

smooth surfaces than our method (e.g., the Dog). On the other hand,

combinatorial methods, such as the ball-pivoting method [Bernar-

dini et al. 1999], the tight cocone [Dey and Goswami 2003], and the

power crust [Amenta et al. 2001], are designed for dense samples

and generally unsuited for sparse and non-uniform inputs like these.

6.3 Performance
Table 1 reports the running time of the four steps of our method

(see Section 5) on the Max Plank data set in Figure 5. Observe that

these statistics agree with the complexity analysis in Section 5.2.

The running time is dominated by the computation of H (inverting

A) and the initialization of optimization (computing eigenvectors of

H ), both exhibiting cubic growth with the input size.

Table 1. Running time (in seconds) of each step for Figure 5 on a MacBook
Pro with 2.5GHz Intel Core i7 CPU and 16 GB memory (implementation in
C++). Timing for Optimization is written as initialization time (using the
offset method of Section 5.1) + NLopt time. Surfacing uses a 1003 grid.

# Points Compute H Optimize g Build fs,g Polygonize

500 0.3 2.5 + 0.2 0.0 6.6

1000 1.8 20.0 + 1.1 0.1 13.0

2000 14.6 165.6 + 10.8 0.3 26.0

4000 98.5 1428.2 + 45.4 0.7 51.7

6.4 Application: sketch surfacing
AR/VR sketching tools, such as Google’s Tilt Brush, allow a user to

create 3D curvilinear designs in a fully immersive manner. While

existing tools only display the sketches, creating a surface directly

from the sketches could give the user a more intuitive grasp of their

design. However, freehand 3D sketches are highly unstructured

(e.g., incomplete strokes, over-sketching, missing junctions, etc.),

whereas existing methods for surfacing 3D wireframes generally

require a clean, connected graph [Bessmeltsev et al. 2012; Pan et al.

2015; Stanko et al. 2016].

Due to its resilience to sparse and non-uniform sampling, our

method is well-suited to perform this challenging surfacing task.

Since we were not able to find a public data set of curves produced

by these sketching systems, we simulate the sketches by freehand

curves drawn on top of existing surfaces. Two examples are shown

in Figure 12 on a sketch of a telephone and a hand (we use 1000

sample points for each). Our method (λ = 0) is able to surface both

examples despite the many incomplete curves. Of particular note is

that our method is able to resolve the small gap between two nearby

fingers of the Hand (see inserts) despite the sparse sampling there.

An even more challenging example is shown in Figure 1, where

we further introduced random perturbation to each curve segment

(by maximally 5% of the longest dimension of the input) to simulate

inaccuracies in free-hand 3D sketches (e.g., over-sketching and miss-

ing junctions). Our method is able to create a smooth approximation

of the Walrus at λ = 0.003.

7 CONCLUSION AND LIMITATIONS
We describe a novel implicit surface definition (VIPSS) from unori-

ented point sets that involves a single parameter (zero for exact

interpolation), applies to any dimensions, and does not require

discretization. Reconstruction using the definition can be easily im-

plemented using standard linear algebra and optimization packages,

and the results appear more robust under sparse and non-uniform

sampling than existing methods.

Limitations. The main limitation of our method is its computa-

tional complexity (cubic on the number of points). There are several

promising directions that wish to pursue for improving its scala-

bility. Since the matrixM is the Gram matrix of inner products in

a semi-Hilbert space, low-rank approximation methods for such

matrices [Drineas and Mahoney 2005; Smola and Schökopf 2000]

can potentially reduce the complexity of various matrix operations

in this work. For large and dense point sets, we may consider an in-

cremental approach akin to [Carr et al. 2001] that starts with fitting

a small subset of points and then incrementally adds more points

where the approximation errors are large.
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Fig. 11. Comparing VIPSS (λ = 0) with methods that do not require oriented inputs: the Voronoi-based variational method of [Alliez et al. 2007], the
ball-pivoting method [Bernardini et al. 1999], the tight cocone [Dey and Goswami 2003], and the power crust [Amenta et al. 2001].

Fig. 12. VIPSS (λ = 0) vectors (b) and surface (c) for samples from an
unstructured sketch (a) of a Phone (top) and Hand (bottom). The inserts
take a closer look between the middle and ring fingers of the Hand (the line
segments in the insert of (b) indicate −g).

Our current approach for initializing the optimization (by trying

different offsets of λ) is neither efficient nor guaranteed to work

for all inputs (particular those exhibiting a varying level of noise

and complexity). A possible remedy to the latter is to explore spa-

tially varying offsets. Alternatively, one may “warm-start” the op-

timization using results obtained from a subset of the points in an

incremental framework, thereby avoiding the need for computing

eigenvectors and trying different offsets.

The robustness of VIPSS to sparse and non-uniform sampling

raises the theoretical question of what is the sampling condition

under which VIPSS has guaranteed reconstruction quality (geomet-

rically and topologically). We would also like to explore how the

current formulation can be extended to reconstruct shapes with

sharp (C0
) features, such as man-made shapes.
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